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What mechanisms underlie the transfer of a working memory representation into a higher-level code for guiding 

future actions? Electrophysiological correlates of attentional selection and motor preparation processes within 

working memory were investigated in two retrospective cuing tasks. In the first experiment, participants stored 

the orientation and location of a grating. Subsequent feature cues (selective vs. neutral) indicated which feature 

would be the target for later report. The oscillatory response in the mu and beta frequency range with an estimated 

source in the sensorimotor cortex contralateral to the responding hand was used as correlate of motor preparation. 

Mu/beta suppression was stronger following the selective feature cues compared to the neutral cue, demonstrating 

that purely feature-based selection is sufficient to form a prospective motor plan. In the second experiment, 

another retrospective cue was included to study whether knowledge of the task at hand is necessary to initiate 

motor preparation. Following the feature cue, participants were cued to either compare the stored feature(s) 

to a probe stimulus (recognition task) or to adjust the memory probe to match the target feature (continuous 

report task). An analogous suppression of mu oscillations was observed following a selective feature cue, even 

ahead of task specification. Further, a subsequent selective task cue again elicited a mu/beta suppression, which 

was stronger after a continuous report task cue. This indicates that working memory is able to flexibly store 

different types of information in higher-level mental codes to provide optimal prerequisites for all required action 

possibilities. 
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. Introduction 

In everyday life, we are frequently required to respond to stimuli

hat are present in our environment. However, what feels natural and

utomatic requires a complex cascade of cognitive processes, ranging

rom sensory perception via motor planning to motor execution. Work-

ng memory plays a central role in these cognitive processes, as it can

e defined as a cognitive stage for the interface between perceptual in-

ormation, higher-level cognitive operations, and goal-directed actions.

ased on two working memory experiments and neural oscillations mea-

ured by means of the EEG, this study examined the role of prospective

otor plans for the focusing of attention within working memory. 

Traditionally, perception and action have been considered to occur

n a capacity-limited, strictly serial fashion ( Pashler, 1994 ). In this view,

ttention acts as a kind of spotlight by enhancing the mental represen-

ation of relevant information and potentially suppressing neural ac-

ivity related to irrelevant content. Analogously, during the storage of

isuo-spatial information in working memory, we can focus attention

n certain stored content and thereby generate a prioritized representa-

ional state, protecting the attended information against decay and in-
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053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar
erference ( Bays & Taylor, 2018 ; Makovski et al., 2008 ; Matsukura et al.,

007 ; Pertzov et al., 2013 ). However, this concept of an attentional bias

n information stored in working memory fails to consider the goal-

irectedness of human information processing in every-day life. What

e store in working memory is not only the mental representation of

ast sensory input, but also information about what current goal we

re pursuing or what future action or mental operation we want to per-

orm. Thus, working memory contents cannot only be seen as more or

ess precise copies of sensory information, but rather as mental repre-

entations that can be used to guide future action (for review: Nobre &

tokes, 2019 ; Olivers & Roelfsema, 2020 ). 

In line with this account, earlier studies have shown that, just as stor-

ng sensory representations, working memory can also store higher-level

epresentations of to-be-executed actions (e.g. Behmer & Fournier, 2014 ;

allivan et al., 2016 ; Schneider et al., 2020 ; Zickerick et al., 2020 ).

he attentional selection of certain working memory content could be

he result of linking a sensory representation to such a representation

f a to-be-executed action ( Olivers & Roelfsema, 2020 ). In this regard,

he measurement of neural oscillations in the EEG as a correlate for

otor planning can provide valuable information. It was shown that
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scillatory power in the mu ( ∼10-14 Hz) and beta frequencies ( ∼15-

0 Hz) can track the preparation of a motor response ( Leocani et al.,

997 ; Pfurtscheller et al., 2000 ; Zhuang et al., 1997 ). For example, when

articipants can acquire explicit knowledge about a certain action se-

uence across an experiment, this knowledge about which action to-

e-executed next is reflected in a suppression of mu oscillatory power

ver motor areas contralateral to the side of response ( Zhuang et al.,

997 ). In a comparable way, an investigation by Schneider, Barth, and

ascher (2017) made use of oscillatory effects in mu/beta power as

orrelates of the creation of motor representations during the storage

nterval of a visual working memory task. Participants had to store three

ifferent visual items and were then cued to focus on one, two or three

tems for later report by means of a right-handed movement of the com-

uter mouse. Following these cues, the authors observed a suppression

f mu and beta oscillatory power with an estimated source in the pre-

otor and motor cortex contralateral to the side of the to-be-executed

ction. Just like in the motor learning experiment by Zhuang and col-

eagues (1997) , this effect was only found when participants gained ex-

licit knowledge about the action to-be-executed next (i.e., when only

ne item was cued) and it appeared clearly prior to the presentation of

he memory probe demanding the actual response. In a comparable way,

an Ede and colleagues (2019) used non-spatial (color) information to

ue relevant working memory content. They orthogonally manipulated

he lateralized position of the relevant visual item in a memory array

left vs. right target) and the required motor response (button press with

eft vs. right index finger). Hemispheric asymmetries in alpha oscilla-

ions related to attentional selection ( Foxe & Snyder, 2011 ; Händel et al.,

011 ; Myers et al., 2015 ; Sauseng et al., 2005 ; Schneider et al., 2016 )

nd in mu and beta oscillations related to planning a left- vs. right-

anded response could thus be fully separated from one another. It

as shown that these types of oscillatory effects were related to spa-

ially distinct areas of the brain but occurred in the same time frame.

hese results highlight that working memory can store sensory infor-

ation along with corresponding motor plans and that both kinds of

emory codes can be selected in support of future behaviour (see also:

oettcher et al., 2021 ). 

So far, the mentioned investigations suggested that correlates of mo-

or planning like the suppression of mu/beta oscillatory power result

rom selecting an individual object stored in working memory for action

ontrol. However, in order to establish a general role of motor planning

rocesses during the selection and storage of working memory content,

t is necessary to investigate whether these principles also apply to the

election of individual features of stored objects. Therefore, as a first

tep, the current study investigated to what extent feature selection in

orking memory also involves the selection and storage of prospective

otor plans. For this purpose, participants had to store both the loca-

ion and orientation of a single object in working memory and were

hen cued to focus on one of these features for later report. We expected

hat both selective cues should lead to a more accurate report relative

o a neutral cue condition without an attentional bias towards either

eature. Furthermore, if selecting a visual feature from an object stored

n working memory also involved motor planning (or the selection of an

ssociated motor code), we should observe stronger suppression of os-

illatory mu and beta power with an estimated source in the pre-motor

ortex contralateral (but not ipsilateral) to the to-be-executed response

or the selective cue conditions relative to the neutral condition. This

ffect should occur together with a stronger suppression of alpha power

ver posterior visual areas following the selective cues that was already

bserved in the context of the retrospective selection of visual object

eatures (see Hajonides et al., 2020 ; Niklaus et al., 2017 ; Sasin & Foug-

ie, 2020 ; Ye et al., 2016 ). 

In a second experiment, we wanted to build on this by asking what

onditions must be met for a prospective motor code to get created in

orking memory. For example, it is possible that a motor representa-

ion can be created only if it is clearly defined that the next operation

n a working memory task requires dealing with the stored information
2 
ased on a certain movement (e.g., adjusting a memory probe orienta-

ion or moving the hand or gaze to a specific position). So far, this was al-

ays the case in the studies that used mu and beta oscillations as a corre-

ate of motor planning during working memory storage ( Boettcher et al.,

021 ; Schneider et al., 2017 ; van Ede et al., 2019 ). Such clear knowledge

bout the task to be executed next has been shown to improve working

emory accuracy ( Printzlau et al., 2019 ) and modulate the way the stor-

ge of visual working memory content is represented in the EEG signal

 Fahrenfort et al., 2017 ). However, it is also possible that a motor repre-

entation of task-relevant working memory content is created even if the

pcoming task has not yet been clearly defined. Working memory could

hen flexibly select from the stored mental representations of a given

ontent the one(s) best suited to support each subsequent operation. In

he present study, participants therefore had to select the relevant in-

ormation in working memory on the basis of a feature cue (location

s. orientation vs. neutral) and later use it either for a continuous re-

ort task (adjusting a memory probe to the target feature by moving the

omputer mouse) or a recognition task (match vs. mismatch decision

ased on a memory probe). Only a second retro-cue (continuous report

s. recognition) or the later memory probe display (following a neutral

ask cue) indicated which of the two tasks should be performed based

n the selected information. We hypothesized that a motor code of the

elected information should be pre-emptively created in working mem-

ry even if the task to be performed has not yet been clearly defined. In

his case, a greater suppression of mu and beta power in contralateral

ensorimotor and pre-motor cortex after the selective feature cues (i.e.,

efore the definition of the task to be performed) relative to the neutral

ondition should be evident as a correlate of motor selection. A further

election of the mental representations useful for the to-be-executed task

hould then take place after the (second) task retro-cue. Compared to

he recognition task which should first require comparing the memory

robe to the relevant visual feature before selecting a certain response,

uing the continuous report task should entail a motor-planning process

head of memory probe presentation, reflected by a stronger suppres-

ion of mu and beta power in contralateral sensorimotor and pre-motor

ortex. These results would argue for a flexible use of sensory and motor

odes in working memory according to the requirements of the tasks to

e performed. 

. Materials and methods 

.1. Participants 

Twenty-four participants took part in the first experiment (15 fe-

ales), who were between 20 and 30 years old ( M = 24.13, SD = 3.03)

nd right-handed (as assessed with the Edinburgh Handedness Inven-

ory: Oldfield, 1971 ). Twenty-six participants took part in the second

xperiment. Due to performance below chance level (n = 3) and one

articipant actually being left-handed, four participants had to be ex-

luded. The final sample in the second experiment thus consisted of 22

ight-handed participants (age: M = 23.09, SD = 2.43, range = 19-27, 19

emale). None of the participants from the first and second experiment

eported suffering from any neurological or psychological disorder. Par-

icipation was compensated with 10 Euros/hour or with course credits

for psychology students). The experiments were approved by the local

thics committee of the Leibniz Research Centre for Working Environ-

ent and Human Factors (Dortmund, Germany) and were conducted in

ccordance with the Declaration of Helsinki. 

.2. Stimuli and procedure 

The experiments took place in an electrically shielded, dimly lit

hamber. Participants were seated with a viewing distance of 150 cm

rom the 22-inch CRT monitor (1024 × 768 pixels), which had a 100 Hz

efresh rate. A ViSaGe MKII Stimulus Generator (Cambridge Research

ystems, Rochester, UK) controlled stimulus presentation. 
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Prior to the actual experiments, participants performed a short train-

ng and three practice blocks to get acquainted with the tasks. During the

raining, a grey circle (luminance = 20cd/m 

2 , RGB = [R54 G54 B54],

iameter = 4.4°) was presented on the left side of the screen. A randomly

riented Gabor grating (size = 1.3°, spatial frequency = 4.25 cycles per

egree, phase = 180°, deviation = 0.25°) was shown on the perimeter

f the circle on a random position. On the right side, a similar second

ircle with either one bar (indicating a position report) or two oppos-

ng bars (indicating an orientation report) was shown. The participants’

ask was to adjust the second circle, using lateral mouse movements,

o that the bar(s) matched the position or the orientation of the Gabor

rating. In cases when the adjustment took longer than 4 s, participants

ere instructed to respond faster in order to familiarize themselves with

he time constrains of the later experiment. The training was complete

hen the average response error was below 18° for orientation and be-

ow 36° for location in 50 consecutive trials. Afterwards, participants

erformed three practice blocks (30 trials each), one for each condition

f the experiment (see below). 

.2.1. Experiment 1 

Participants were instructed to memorize the orientation and loca-

ion of an oriented Gabor grating (similar to the one in the training;

6 different possible locations 22.5° apart from each other; eight dif-

erent possible orientations 22.5° apart from each other), depicted on

he perimeter of an imaginary centrally located circle (diameter = 4.4°).

fter a 1500 ms delay interval, a retrospective feature cue indicated

hether participants would have to recall the location (location cue:

P ” for “Position ”; one third of the trials) or orientation (orientation

ue: ”, “O ”; one third of the trials) of the initially presented grating (see

ig. 1 A). In one third of the trials, the feature cue contained no informa-

ion about the to-be-reported feature (neutral cue, “X ”). After another

elay period, a highly salient distractor appeared in the centre of the

creen followed by another delay interval. The visual distractor was in-

luded for facilitating decoding of the cued working memory represen-

ations (see Wolff et al., 2017 ) and therefore is not relevant for the cur-

ent investigation. Finally, a memory probe, which consisted of a circle

ith either one marker (location report) or two opposing markers (ori-

ntation report) at a randomly chosen position appeared. Upon memory

robe presentation, participants had to adjust the marker(s) position to

ndicate the cued feature (i.e., the grating’s location or orientation). Fol-

owing a neutral feature cue, the type of memory probe (one mark vs.

wo marks) indicated the target feature. Once the probe was correctly

djusted, each answer had to be confirmed by a button press within 4

. Otherwise the trial was considered incomplete. The task consisted of

20 trials (240 per feature cue condition) and the whole experiment

including the EEG cap preparation) lasted around 3.5 hours. 

.2.2. Experiment 2 

The second experiment differed from the first one in the sense that

articipants had to perform one of two possible tasks: either the same

ocation/orientation continuous report task as in Experiment 1 (50% of

he trials) or a recognition task (50% of the trials). After memorizing the

ocation and orientation of the grating presented in the memory array,

 retrospective feature cue (location cue, orientation cue or neutral fea-

ure cue) indicated which feature was going to be relevant at the end of

he trial. The delay interval after the feature cue was followed by a sec-

nd retro-cue indicating whether participants had to adjust the location

r orientation of the probe or to compare a presented feature with the

ued feature from the memory array. When the continuous report task

as cued (one third of the trials; “K ”, K = kontinuierlich; i.e., the German

ord for “continuous ”; see Fig. 1 B) the memory probes were identical to

he first experiment. When the recognition task was cued (one third of

he trials; “V ”, V = Vergleich; i.e., German for “comparison ”) the probe

isplayed just one feature. The probe location was indicated by a filled

rey circle presented at a given location on an imaginary circle. Partici-

ants had to indicate by pressing the left or right button on the computer
3 
ouse (right hand) whether the position of the grey circle matched the

nitial position of the memory item. In orientation-recognition trials, a

rating with a specific orientation was presented in the centre of the

creen. Again, participants had to indicate with the computer mouse

uttons whether this was the same or different orientation as presented

n the memory array. The probe matched the memory array in half of

he recognition task trials. The assignment of responses to the computer

ouse buttons was counterbalanced across participants. In one third of

he trials, the task cue was neutral, and participants could infer which

ask they should perform by looking at the probe display. When the

robe was a circle with one or two marks on it, they had to perform the

ontinuous report task. When it was either a filled grey circle or a cen-

rally presented grating, the recognition task had to be performed. The

ombination of feature and task cues resulted in nine conditions (3 × 3

xperimental design) with 80 trials each. The experiment consisted of

20 trials in total and took about 4 hours, including the preparation of

he EEG cap. 

.3. Behavioural Analysis 

.3.1. Experiment 1 

Only complete trials (including a button press following loca-

ion/orientation report) were included in the analyses and two parame-

ers were considered: the angular error (calculated as the difference be-

ween the original orientation/location of the grating and the reported

alue) and the time to mouse movement (i.e., the time required for

tarting response initiation). For analysis of the angular error, condi-

ions were compared against the respective neutral retro-cue condition

ith a t -test separately for each feature. More specifically, trials with

 location feature cue were compared to neutral trials with a location

robe and orientation feature cue trials were compared to neutral trials

ith a later orientation probe. Since location and orientation adjustment

eatured different maximal angular error values (location: 180°; orien-

ation: 90°), angular error analysis was done separately for each feature.

ime to mouse movement onset was analysed with a repeated measures

nalysis of variance (rm-ANOVA) with the factors feature (location vs.

rientation) and cue type (selective vs. neutral). 

.3.2. Experiment 2 

Parameters for the analysis of working memory accuracy and re-

ponse initiation in the continuous report task were the same as in

xperiment 1: the angular error and time to mouse movement onset.

nly complete trials were included in all analyses. For the recognition

ask, the percentage of correct responses and response times were anal-

sed. Here, responses were considered from 150 - 4000 ms after memory

robe presentation. Trials with responses prior to this interval were not

ncluded in the analyses (premature responses). Responses were consid-

red as erroneous when there was a wrong button press or no button

ress within 150 - 4000 ms (misses). For analysis of the angular error,

eparate rm-ANOVA were run with the factors feature cue (selective vs.

eutral) and task cue (selective vs. neutral). All other parameters (contin-

ous task: time to mouse movement onset; recognition task: percentage

f correct responses, response times) were analysed with a rm-ANOVA

ith the factors feature (location vs. orientation), feature cue (selective

s. neutral) and task cue (selective vs. neutral). 

.4. EEG recording and pre-processing 

EEG data were recorded using a 128 Ag/AgCl passive electrode

ap (Easycap GmbH, Herrsching, Germany) with a 10/20 configuration

 Pivik et al., 1993 ). Data were recorded with a sampling rate of 1000

z and amplified by a NeurOne Tesla AC-amplifier (Bittium Biosignals

td, Kuopio, Finland). During data acquisition, an online 250 Hz low-

ass filter was applied, which was chosen to be well below the Nyqist

requency in order to prevent aliasing. Impedances were kept below 20
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Fig. 1. Experimental design. Panel A depicts the procedure of Experiment 1. Each trial began with the presentation of an oriented Gabor grating whose location 

and orientation had to be memorized. After a delay interval, a selective feature cue (P = position, O = orientation, X = neutral) indicated whether participants had 

to reproduce the orientation or location. Finally, after presentation of a visual distractor stimulus, a memory probe had to be adjusted so that it matched the target 

feature. The design of Experiment 2 is depicted in panel B. Here, the feature cue was followed by a task cue (X = neutral, K = continuous report task, V = recognition 

task) indicating whether a continuous report task (as in Experiment 1) or a recognition task had to be performed. In the recognition task, either a probe location or 

a probe orientation was presented, and participants indicated by mouse click whether it matched the target information from the memory array. 
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s  
 Ω. The FCz electrode was chosen as reference and the AFz as ground

lectrode. 

EEG data were analysed using MATLAB (R2021a) and the EEGLAB

oolbox (v.14.1.2, Delorme & Makeig, 2004 ). As the first pre-processing

tep, data were 1 Hz high-pass (roll-off = 48dB/oct, half-amplitude

ut-off: 1 Hz, half-power cut-off: 1.1 Hz) and 40 Hz low-pass filtered

roll-off = 48dB/oct, half-amplitude cut-off: 40 Hz, half-power cut-

ff: 36.4), using an infinite impulse response (IIR) Butterworth filter

 pop_basicfilter function included in the ERPLAB toolbox; Lopez-Calderon

 Luck, 2014 ). Prior research has shown that 1-2 Hz high-pass fil-

ering of the continuous data can optimize ICA decomposition (see

inkler et al., 2015 ). The 40 Hz low-pass filter was applied to ex-
4 
lude high-frequency fluctuations in the EEG signal that were not of

nterest for the current investigation ( > 30 Hz; e.g., line noise). Af-

er filtering, the data were down sampled to 250 Hz to decrease fur-

her processing time. Channels containing a high level of artifacts were

xcluded using an automated channel rejection procedure ( pop_rejchan

unction included in EEGLAB, probability threshold = 5 SD; kurtosis

hreshold = 10). On average, 5.79 channels were excluded per partici-

ant ( SD = 3.75, range = 0-15) in Experiment 1. In Experiment 2, 6.92

hannels per participant were excluded on average ( SD = 4.6, range = 1-

5). 

Next, data were re-referenced to a common average and were then

eparated into epochs time-locked to the memory array (Experiment 1:
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000 ms before and 6100 ms after the memory array; Experiment 2:

000 ms before and 7400 ms after the memory array). Trials containing

xtreme fluctuations were excluded with an automated artifact rejection

rocedure ( pop_autorej function included in EEGLAB; threshold = 500

V, probability threshold = 5 SD, max. % of rejected trials per itera-

ion: 5%). On average, 664.42 trials remained for the ICA ( SD = 36.86,

ange = 592 - 711) in Experiment 1 and 672.84 trials ( SD = 34.06,

ange = 592 - 715) in Experiment 2. 

ICA was conducted on the rank-reduced data (number of channels

inus 1, i.e., to account for the rank deficiency introduced by re-

eferencing to average reference) and components reflecting artifacts

horizontal and vertical eye movements, blinks, generic data disconti-

uities) were identified using ADJUST ( Mognon et al., 2011 ). In addi-

ion, single-equivalent current dipoles were fitted on the ICs based on

 spherical head model using the dipfit-plugin of the EEGLAB toolbox.

Cs with a residual variance exceeding 50% regarding their dipole solu-

ion and those ICs identified by ADJUST were excluded. Overall, 50.33

omponents ( SD = 11.30, range: 32-73) were excluded in Experiment

. In Experiment 2, 51.05 components ( SD = 11.39, range: 32-77) were

xcluded. 

Trials still containing extreme fluctuations were identified and ex-

luded through a second automated artifact rejection procedure (thresh-

ld = 1000 μV, probability = 5 SD, max. % of trials rejected per it-

ration = 5%). On average, 195.13 trials per experimental condition

 SD = 16.46, range = 166 – 228.67) (Experiment 1) remained. In Exper-

ment 2, 67.48 ( SD = 5.6, range = 58.33 – 76.11) trials per experimental

ondition remained on average. Finally, rejected channels were interpo-

ated based on a spherical spline algorithm ( eeg_interp function included

n EEGLAB). 

.5. Channel-based analysis 

Spectral power was computed by convolving complex Morlet

avelets with each trial of the EEG data. Frequencies between 4 and 30

z were included, which increased in logarithmic steps of 52. The width

f the Gaussian, defined by the number of cycles, increased linearly by

 factor of 0.5, resulting in three cycles at the lowest and 11.5 cycles at

he highest frequency. An interval of 200 ms before memory array on-

et (-200 to 0) was used as spectral baseline. The resulting epochs con-

ained 200 time points ranging from -1000 ms before to 6000 ms after

emory array onset (Experiment 2: -1000 ms to 7400 ms after memory

rray onset). For both experiments, ERSPs were computed separately

or each experimental condition (Experiment 1: feature cue conditions;

xperiment 2: feature and task cue combinations). Depending on the

articular research questions, averages were taken across conditions for

urther analysis. 

Similar to Schneider et al. (2017) , four clusters of electrodes were

hosen to investigate to what extent the retrospective cuing of object

eatures led to a modulation of oscillatory power prior to memory probe

resentation: two clusters over the left (PO3, PO7, PPO5h, P7, P5) and

ight (PO4, PO8, PPO6h, P8, P6) parieto-occipital cortex and two clus-

ers over the left (CP3, CCP5h, CCP3h, C3) and right (CP4, CCP6h,

CP4h, C4) sensorimotor cortex. As a first step, data were averaged

cross these clusters and across the two selective feature cue conditions.

 cluster-based permutation procedure was performed in order to find

he time window and frequency range in which selective and neutral

eature cue conditions differed from each other. Since differences in this

egard should appear following the retro-cue (the first retro-cue for Ex-

eriment 2), only time points between the retro-cue and the probe were

ncluded in the permutation procedure. Condition labels (selective vs.

eutral feature cue) were randomly assigned to each dataset. This was

epeated 1000 times. A two-sided within subject t -test was performed

or each time-frequency data point on each iteration resulting in a time

oints (67) x frequencies (52) x permutations (1000) matrix (Experi-

ent 2: time points (63) x frequencies (52) x permutations (1000)). For

ach permutation, the size of the largest time-frequency cluster with p
5 
 .05 was assessed. Differences between selective and neutral feature

ues in the original data were considered significant, if the size of time-

requency cluster was larger than the 95 th percentile of the distribution

f cluster sizes created by the permutation procedure. 

Subsequently, a rm-ANOVA with the factors condition (location fea-

ure cue vs. orientation feature cue vs. neutral feature cue), hemi-

phere (left vs. right electrode clusters) and caudality (posterior vs. cen-

ral electrode clusters) was performed on the identified time-frequency

lusters. The three-way interaction of these factors was analysed to

est whether the stronger contralateral (left-hemispheric) vs. ipsilateral

right-hemispheric) suppression in mu/beta oscillatory power we ex-

ected for the selective feature cue conditions was indeed stronger over

he motor cortex (central electrode clusters) and not rather related to

etro-cue effects on more posterior oscillatory patterns in the alpha and

eta frequency ranges. 

.6. Independent component clustering 

A clustering procedure on IC level, as implemented in the EEGLAB

oolbox, was used to further isolate the mu/beta activity over the sen-

orimotor cortex from posterior alpha activity and to prove the sensori-

otor source of the mu/beta suppression. 

All parameters used for the clustering procedure were based on the

pproach by Schneider et al. (2017) . However, the number of clusters

esulting from the k-means clustering algorithm was changed to 24,

ue to the higher number of channels (resulting in a higher number

f ICs). We chose this higher number of resulting clusters to guarantee a

ufficient solution with many datasets contributing ICs to the mu/beta

lusters, while still ensuring a good isolation of the mu/beta IC clus-

ers from those reflecting more posterior alpha/beta oscillations. Only

Cs with less than 20% residual variance regarding their dipole solu-

ion were included in the clustering procedure (see Schneider et al.,

017 ). Event-related spectral perturbations (ERSPs) for the individual

Cs were calculated with the same parameters as for the channel-based

nalysis. Frequency spectra were computed using an FFT (fast-Fourier

ransform) algorithm. The clustering was based on estimated dipole lo-

ations (three dimensions), scalp distributions (10 dimensions), ERSPs

etween 4 and 30 Hz (10 dimensions) and spectral power between 4

nd 30 Hz (10 dimensions). The number of dimensions define to what

xtent the different features contribute to the generation of the clusters

 Onton & Makeig, 2006 ). As the IC dipole solution can only contribute

hree dimensions (x, y and z values), its relative contribution to cluster-

ng was weighted by a factor of 10 (see the std_preclust function included

n EEGLAB). A k-means clustering algorithm separated 870 ICs into 24

lusters (Experiment 2: 835 ICs into 24 clusters). Furthermore, an indi-

idual IC was considered as an outlier when it was more than 3 SD away

rom any of the 24 cluster centroids (referring to the distance between

he IC and the locations representing the centre of each IC cluster in

he multidimensional feature space; see pop_clust function included in

EGLAB). 

To further illustrate the estimated neural sources of the IC clusters

sed for further analyses (see Results section), we specified the MNI

oordinates of the dipole centroid for each cluster. MNI coordinates re-

ulted from the dipole fitting procedure where the channel locations

ere aligned with a spherical head model and an average MRI im-

ge from the Montreal Neurological Institute (MNI) database (average

f 152 T1-weighted stereotaxic volumes; International Consortium for

rain Mapping/ICBM). Thus, each individual component was assigned a

ipole with three coordinates (x,y,z), which can be mapped to a specific

rain region via the average MNI brain template. Based on all ICs within

 cluster, we then expanded this centroid point to a sphere with a radius

hat had the length of 1 SD referred to each of the three dipole coordi-

ates. The statistical sources were defined by the number of grid points

ithin this extended spatial sphere that belonged to a specific anatomi-

al structure, divided by the number of all grid points (see Figs. 5 , 7 and

 ). This procedure was based on the std_dipoleDensity function imple-
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ented in the EEGLAB toolbox. For statistical analyses, ICs from sub-

ects contributing several ICs to one of the clusters were averaged. 

For Experiment 1, ERSP responses generated by the statistical

ources from 19 participants (left-hemispheric cluster) and 20 partici-

ants (right-hemispheric cluster) were compared between the two se-

ective feature cue conditions (location vs. orientation) and the neutral

ondition by a cluster-based permutation approach comparable to the

ne described for the channel-based analysis. For Experiment 2 (left-

emispheric cluster: 22 participants; right-hemispheric cluster: 23 par-

icipants), the same cluster-based permutation approach was used for

nalysing condition effects based on the first feature retro-cue (location

s. orientation vs. neutral) and the second task cue (continuous report

s. comparison vs. neutral). 

.7. Inferential statistics and effect sizes 

When indicated by Mauchly’s test for sphericity, Greenhous-Geisser

orrection was applied (indicated by e ). Effect sizes for ANOVAs are indi-

ated by partial eta squared ( 𝜂2 
p ) and by Cohens d z for within-subject t -

ests. To prevent p -value inflation due to multiple comparisons, the false

iscovery rate (FDR) procedure (adjusted p values / p adj are reported in

his regard; Benjamini & Hochberg, 1995 ) was used for post-hoc com-

arisons and to adjust for hidden multiplicity within rm-ANOVAs (the

ritical p -value or p crit is reported in this regard; Cramer et al., 2016 ).

dditionally, the boundaries of the 95 th confidence interval (CI) sur-

ounding the mean condition differences are reported. 

. Results 

.1. Behavioural results 

.1.1. Experiment 1 

Precision of working memory performance was assessed by the dif-

erence between the target feature value and the adjusted probe. This

ngular error (see Fig. 2 A) for location adjustment was lower following

 location feature cue than following a neutral feature cue, t (23) = -

.47, p adj = .043, d z = -0.50, CI 95% [-2.12 -0.19]. However, this ef-

ect was increased by on outlier in the neutral feature cue condition.

fter outlier exclusion (mean + /- 3 standard deviations), this effect

ould no longer be considered as statistically significant, t(23) = -2.36,

 adj = .055, d z = -0.49, CI 95% [-1.55 0.10]. Similarly, the angular er-

or for orientation adjustment trials did not differ between selective and

eutral feature cues, t (23) = -1.88, p adj = .072, d z = -0.38, CI 95% [-1.64

.08]. Speed of response initiation (indicated by time to mouse move-

ent onset; see Fig. 2 B) was accelerated by the selective feature cue,

 (1,23) = 151.38, p < .001, p crit = .017, 𝜂2 
p = 0.87. Speed of location

djustment did not differ from orientation adjustment, F (1,23) = 1.74,

 = .200, p crit = .05, 𝜂2 
p = 0.07. There was also an interaction of task and

eature cue, F (1,23) = 11.85, p = .002, p crit = .033, 𝜂2 
p = 0.34. Compar-

son of effect sizes revealed that time to response initiation was slightly

ore decreased after a selective compared to a neutral cue in location,

 (23) = -11.48, p adj < .001, d z = -2.34, CI 95% [-195.83 -136.01], than

n orientation adjustment trials, t (23) = -10.49, p adj < .001, d z = -2.14,

I 95% [-149.37 -100.16]. 

.1.2. Experiment 2 

For Experiment 2, precision of working memory performance (see

ig. 3 A) in the continuous task was reliably increased for location ad-

ustment by a selective feature cue, as revealed by a main effect of fea-

ure cue, F (1,21) = 14.26, p = .001, p crit = .017, 𝜂2 
p = 0.40, while there

as no influence of the task cue on probe adjustment, F (1,21) = 0.37,

 = .548, p crit = .05, 𝜂2 
p = 0.02. Orientation adjustment was not affected

y any of the cues (feature cue: F (1,21) = 0.04, p = .845, p crit = .033,
2 

p < .01; task cue: F (1,21) < 0.01, p = .962, p crit = .05, 𝜂2 
p < 0.01). 

For the recognition task, the percentage of correct responses (see

ig. 3 B) was used to assess working memory accuracy. Here, selec-
6 
ive feature cues increased performance, F (1,21) = 27.46, p < .001,

 crit = .007, 𝜂2 
p = 0.57. As in the continuous task, the task cues had no

ffect on accuracy, F (1,21) = 0.36, p = .554, p crit = .043, 𝜂2 
p = 0.02. In

eneral, performance was better for location than for orientation recog-

ition, F (1,21) = 24.97, p < .001, p crit = .014, 𝜂2 
p = 0.54. 

As in Experiment 1, time to mouse movement onset (see Fig. 3 C)

as utilized as a measure for speed of response initiation in the con-

inuous report task. Response initiation did not differ between lo-

ation and orientation adjustment trials, F (1,21) = 1.99, p = .173,

 crit = .027, 𝜂2 
p = 0.09. Responses were speeded by a selective feature

ue, F (1,21) = 48.77, p < .001, p crit = .007, 𝜂2 
p = 0.70, as well as by a se-

ective task cue, F (1,21) = 47.66, p < .001, p crit = .014, 𝜂2 
p = 0.69. After

orrecting for hidden multiplicity within the ANOVA none of the possi-

le interactions remained significant (all p-values > .027, corresponding

ritical p-values = .014). 

Responses to the recognition task were faster after selectively cueing

ither of the features, F (1,21) = 36.69, p < .001, p crit = .014, 𝜂2 
p = 0.64.

he selective task cue also decreased response times, F (1,21) = 27.79,

 < .001, p crit = .021, 𝜂2 
p = 0.57. Response times in general were

aster for location than for orientation recognition, F (1,21) = 55.17, p

 .001, p crit = .007, 𝜂2 
p = 0.72. Finally, the effect of the feature cue dif-

ered between the cued features, F (1,21) = 7.93, p = .010, p crit = .029,
2 

p = 0.27, in the way that selective feature cues decreased response

imes more strongly in location, t (21) = -5.44, p adj < .001, d z = -1.16, CI

5% [-205.39 -91.84], than orientation recognition trials, t (21) = -3.77,

 adj = .001, d z = -0.80, CI 95% [-103.04 -29.73]. 

Summarized, also Experiment 2 indicated an overall performance

enefit of selective feature cues. While the task cues did not consistently

ffect performance, a benefit was shown regarding the time required for

esponse initiation in both the continuous report task and the recogni-

ion task. This is especially true for a continuous report of orientation,

ince here a selective feature cue further amplified the acceleration of

esponse initiation following a selective task cue. 

.2. EEG results 

.2.1. Experiment 1 

.2.1.1. Channel-based analysis. Analyses on EEG level were focused on

he left (PO3, PO7, PPO5h, P7, P5) and right (PO4, PO8, PPO6h, P8,

6) posterior electrodes as well as on the left (CP3, CCP5h, CCP3h, C3)

nd right (CP4, CCP6h, CCP4h, C4) electrodes over sensorimotor sites.

n a first step, time-frequency data were collapsed over all electrode

lusters and selective and neutral trials were contrasted by a cluster-

ased permutation procedure, which revealed a broad significant dif-

erence in mu and beta frequency ranges following the feature cue (see

ig. 4 A). Based on this time-frequency cluster, a rm-ANOVA was run

ith the factors condition (location vs. orientation vs. neutral feature

ue) x hemisphere (left vs. right) x caudality (central vs. posterior). Im-

ortantly, this ANOVA revealed a 3-way interaction, F (2,46) = 3.45,

 = .040, 𝜂2 
p = 0.13 (see Fig. 4 C-F). 

When only considering the posterior recording sites, there was a con-

ition x hemisphere interaction, F (2,46) = 9.37, p = .001, p crit = .042,
2 

p = 0.28, e = .80. The condition effect was stronger over left posterior

ites, F (2,46) = 21.67, p = .001, p crit = .017, 𝜂2 
p = 0.29, e = .69, than

ver right posterior sites, F (2,46) = 8.53 p = .003, p crit = .05, 𝜂2 
p = 0.27,

 = 0.73. The 3-way interaction can be explained by the fact that for

he central recording sites, there was an even stronger condition x hemi-

phere interaction, F (2,46) = 11.09, p < .001, p crit = .042, 𝜂2 
p = 0.33,

 = 0.79. Again, the feature cue effect was stronger over the left hemi-

phere, F (2,46) = 31.74, p < .001, p crit = .013, 𝜂2 
p = 0.58, e = 0.69,

han over the right hemisphere, F (2,46) = 10.61, p < .001, p crit = .038,
2 

p = 0.32, e = 0.87. 

Summarized, there was a stronger hemispheric difference regarding

he feature cue effect (selective vs. neutral) over the sensorimotor cor-

ex than over posterior visual areas. This might indicate that the lat-

ralized mu/beta effect was associated with the planning of the right-
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Fig. 2. Behavioural results of Experiment 1. 

Panel A shows the angular error for location 

feature cues vs. neutral cue conditions (left) 

and for the orientation feature cue vs. neutral 

cue conditions (right). The coloured dots de- 

pict the mean angular error of each participant 

and the horizontal line depicts the mean across 

participants. Panel B represents comparisons of 

the time to mouse movement onset between the 

above-mentioned conditions. 
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anded motor response following selective feature cues. To further sup-

ort this assumption, we looked specifically at oscillatory power from

stimated neural sources in left vs. right sensorimotor cortex based on

n IC-clustering approach. 

.2.1.2. IC-based analysis. We observed two IC clusters that featured

he typical characteristics of the mu and beta oscillatory response in

reparation for responses and during their execution (see Jenson et al.,

019 ; Jenson & Saltuklaroglu, 2021 ; Schneider et al., 2017 ). These char-

cteristics include a spectral response (FFT) with a peak in both the al-

ha (8-14 Hz) and beta (15-30 Hz) frequency range (see Figs. 5 B & D, 8 B

 D), an average dipole location within left- or right-hemispheric pre-

otor or motor cortex, and a scalp distribution of the IC cluster with

trongest activity over left- or right motor areas (see Figs. 5 E-H, 7 B, C,

 & F). 

Dipole density analysis indicated estimated neural sources in the left

ensorimotor cortex for IC cluster 12 (located with 37% probability in

he precentral gyrus and 31% probability in the post central gyrus; see

ig. 5 C) and right sensorimotor cortex for IC cluster 23 (located with

4% probability in the precentral gyrus and 33% probability in the mid-

le frontal gyrus; see Fig. 5 F). 

All conditions were contrasted by separate cluster-based permuta-

ion procedures. Both the location and the orientation feature cues led

o differences in oscillatory power in mu and beta frequency range rel-

tive to the neutral cue condition (see Fig. 5 A). Importantly, only for

he left (contralateral) IC cluster, this effect appeared clearly prior to

he onset of the memory probes demanding the actual motor response.

or the right (ipsilateral) IC cluster, the minor differences between the

elective and neutral cue conditions were only evident after memory

robe presentation (see Fig. 5 C). 
7 
.2.2. Experiment 2 

.2.2.1. Channel-based analysis. Oscillatory power averaged over the

our electrode clusters was compared between the selective and neu-

ral feature cue conditions and revealed a time-frequency cluster with

 significant difference after the feature cue presentation (see Fig. 6 ).

ike for Experiment 1, the subsequent rm-ANOVA revealed a significant

ondition x hemisphere x caudality interaction, F (2,44) = 4.47, p = .017,
2 

p = 0.17. While a subsequent ANOVA on posterior channels revealed

o hemispheric difference regarding the condition effect, F (2,44) = 0.02,

 = .982, p crit = .05, 𝜂2 
p < 0.01, the same analysis focusing on the two

entral electrode clusters found a significant condition x hemisphere in-

eraction, F (2,44) = 4.47, p < . 001 , p crit = . 025 , 𝜂2 
p = 0.27. This again

uggested that the stronger suppression of mu and beta power following

elective feature cues was related to motor preparation processes. 

.2.2.2. IC-based analysis. As revealed by the dipole density analysis,

he left-hemispheric mu/beta IC cluster 16 (precentral gyrus: 24%; post-

entral gyrus: 43%) and the right-hemispheric mu/beta IC cluster 21

precentral gyrus: 36%; middle frontal gyrus: 27%) were estimated in

ensorimotor and premotor cortex with a high probability. Only for the

eft-hemispheric mu/beta IC cluster, the cluster-based permutation pro-

edure revealed a stronger suppression of oscillatory power following

he location cue than following the neutral cue. Similarly, there was a

tronger suppression of oscillatory power after the orientation cue than

fter the neutral cue. The two selective feature cue conditions (loca-

ion vs. orientation) revealed no difference in this regard (see Fig. 7 A).

his highlights that, even when the to-be-executed task was not yet fully

pecified, cuing of the target feature resulted in a stronger suppression

f mu and beta oscillatory power, but only in the sensorimotor cortex

ontralateral to the future response. 
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Fig. 3. Behavioural results of Experiment 2. 

Panel A shows the angular error for the dif- 

ferent combinations of the feature cue (selec- 

tive vs. neutral) and task cue (selective vs. neu- 

tral). The orange-coloured dots depict the mean 

angular error of each participant for selective 

task cues and the green coloured dots for the 

neutral task cue condition. The vertical line in- 

dicates the condition average. Panel B repre- 

sents the correct response rate in the recogni- 

tion task. Panel C shows the time required to 

initiate the mouse movement and Panel D the 

response times in the recognition task. 
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Comparing the data based on the second task cue (see Fig. 8 ) re-

ealed a significant cluster of stronger mu and beta suppression follow-

ng a continuous report task cue than a neutral task cue. Cuing a recog-

ition task resulted in a stronger suppression of mu oscillatory power

ompared to a neutral task cue. There was also a difference between the

elective task cues. The continuous report task cue resulted in a stronger
8 
u and beta suppression starting at around 748 ms after cue onset. We

urther analysed whether the difference in oscillatory power between

elective (continuous report or recognition) and neutral task cues dif-

ered as a function of feature cue type. The time-frequency window for

his analysis resulted from the comparison of the combined selective

ask cues and the neutral task cue condition with the cluster-based per-
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Fig. 4. Results of the channel-based analyses. Panel A shows the time-frequency distribution of the activity averaged across channels and subjects for the selective 

cue, the neutral cue condition, and the difference between selective and neutral activity. The vertical solid lines indicate relevant events throughout the trial (0 ms - 

memory array onset, 1800 ms - selective cue onset, 3000 ms - visual distractor onset, 3900 - ms memory probe onset). Stimulus offset times are indicated by dashed 

vertical lines. Panel B illustrates the topographical distribution of the location-minus-neutral condition activity (left) and the orientation-minus-neutral condition 

activity (right) averaged across the significant cluster (see solid line in panel A). Panel C-F highlights the time course of oscillatory power in the significant frequency 

range (8-15 Hz) for the four electrode clusters of interest. The standard error of the mean is indicated by shaded areas surrounding the condition average. The grey 

areas depict significant time windows obtained by conducting the cluster-based permutation analysis (2200 - 3300 ms; see panel A). 
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o  
utation procedure described above. This was done to test whether the

ifferences in the oscillatory response between the task cue conditions

ere actually based on the process of selecting a specific feature that

as only postponed to a time when the actual task had been specified.

hese post-hoc analyses could not reveal a difference in the task cue

ffect depending on the prior feature cues, F (4,84) = 1.50, p = .210,

 crit = .05, 𝜂2 
p = 0.07, making it unlikely that delayed feature selection

an fully explain the effects of the task cue. However, we cannot com-

letely rule out this alternative explanation, since there was no longer a

eliable effect between selective and neutral task cues when only consid-

ring trials with neutral feature cues (continuous report: t (21) = -1.98,

 adj = .122, d z = -0.42, CI [-0-78 0.02]; recognition task: t (21) = -1.26,

 adj = .221, d z = -0.23, CI [-0.53 0.13]). 

When comparing the oscillatory response of the contralateral

u/beta cluster between trials with fast vs. slow responses based on

 median split within each experimental condition, we found a stronger

uppression of oscillatory power in the mu frequency range to be linked

o fast responses. A post-hoc ANOVA based on the significant time-
9 
requency cluster revealed that this effect appeared independent of ex-

erimental conditions. There was no interaction of the RT effect with

he type of feature cue, F (2,42) = 0.74, p = .483, p crit = .043, 𝜂2 
p = 0.03,

nd it did not differ between the continuous report and the recognition

ask, F (2,42) = 0.69, p = .507, p crit = .05, 𝜂2 
p = 0.03. Also, the three-way

nteraction was non-significant, F (4,84) = 2.247, p = .071, p crit = .029,
2 

p = 0.10. 

. Discussion 

By means of oscillatory parameters of the EEG, the present study

emonstrates that the selection of visual features stored in working

emory results in the concurrent selection of preparatory motor codes.

his is true even when an individual feature of a single item stored in

orking memory is selected and when the exact, to-be-executed task is

till unknown. 

In line with earlier research on feature selection in working mem-

ry ( Hajonides et al., 2020 ; Niklaus et al., 2017 ; Sasin & Fougnie, 2020 ;
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Fig. 5. Feature cue effects for contralateral vs. ipsilateral mu/beta IC clusters (Experiment 1). Panel A depicts a time-frequency plot showing the condition differences 

contralateral to the responding hand. Time-frequency clusters differing between the conditions are indicated by a solid (-) line. Stimulus offset times are indicated 

by dashed vertical lines. Panel B shows the spectral power of the left hemispheric IC cluster. Panel C and D depict the respective results for the right hemispheric IC 

cluster. Panel E and G show the scalp map and the respective dipole density distribution of the left hemispheric IC cluster. Panel F and H depict the scalp map and 

dipole density distribution for the right hemispheric IC cluster. 

10 
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Fig. 6. Results of the channel-based analyses (Experiment 2). Panel A shows the time-frequency distribution of the activity averaged across channels and subjects 

for the selective cue, neutral cue condition, and the difference between the two conditions. The vertical solid lines indicate relevant events throughout the trial (0 

ms –memory array onset, 1800 ms – selective cue onset, 3000 ms – task cue onset, 4200 memory probe onset) and the solid line (-) marks the cluster in which the 

conditions differ significantly. Stimulus offset times are indicated by dashed vertical lines. Panel B illustrates the topographical distribution of the location-minus- 

neutral condition activity (left) and the orientation-minus-neutral condition activity (right averaged across the significant cluster (see panel A)). Panel C-F highlights 

the time course of the significant frequency range for the four electrode clusters of interest. The standard error of the mean is indicated by the shaded area surrounding 

each condition average. The grey areas depict significant time windows (2200 ms - 4100 ms) obtained from the cluster-based permutation analysis (see panel A). 
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Z  
e et al., 2016 ), we could show in Experiment 1 that a retrospective cue

owards a single feature of a visual object caused a performance bene-

t relative to a neutral cue condition, both in terms of working mem-

ry precision and the speed of response initiation (see Fig. 2 ). On the

lectrophysiological level, we observed a suppression of alpha (or mu)

nd beta power ( ∼8 – 30 Hz) at posterior and centro-parietal record-

ng sites that was stronger following selective feature cues (see Fig. 4 ).

mportantly, and in line with a prior investigation from our lab (see

chneider et al., 2017 ), the centro-parietal electrode clusters featured

n increased hemispheric difference, with a stronger suppression of os-

illatory power over the left-hemispheric electrodes. In addition to the

uppression of posterior alpha power already shown in the context of

eature selection in working memory ( Hajonides et al., 2020 ), this indi-

ates an oscillatory effect prior to memory probe presentation that ap-

eared specifically over the motor cortex contralateral to the responding

and. Earlier research has shown that this contralateral suppression of

scillatory power appeared prior to both left-sided and right-sided motor
11 
esponses ( Schneider et al., 2020 ; van Ede et al., 2019 ; Zickerick et al.,

021 ). 

The IC-clustering approach supported the contralateral mu and beta

uppression effect (see Figs. 5 B). We obtained both a left-hemispheric

nd right-hemispheric IC cluster with the typical spectral peaks in mu

nd beta frequencies and estimated neural sources in sensorimotor and

re-motor cortex. Importantly, only the left-hemispheric cluster (i.e.,

he cluster contralateral to the executed motor response) featured a

tronger suppression of mu and beta power following the selective fea-

ure cues. The ipsilateral mu/beta IC cluster showed differences in oscil-

atory power only after memory probe presentation (see Fig. 5 E). This

scillatory pattern has typically been linked to the planning of a re-

ponse prior to its actual execution, both when selecting information

elevant for later action from working memory (e.g. Boettcher et al.,

021 , S. 2; Schneider et al., 2017 , 2020 ; van Ede, 2018 ) and prior to

elf-paced movements ( Leocani et al., 1997 ; Pfurtscheller et al., 2000 ;

huang et al., 1997 ). Thus, whereas the posterior suppression of alpha
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Fig. 7. Feature cue effects for contralateral vs. ipsilateral mu/beta IC clusters (Experiment 2). Panel A depicts the differences in oscillatory power between conditions 

for all pair-wise contrasts between the feature cues at the contralateral IC cluster. Time-frequency clusters differing between the conditions are indicated by a solid 

(-) line. Panel B shows the scalp map of the left-hemispheric IC cluster and Panel C the respective dipole densities. Panel D-F depict the same results for the right 

sensorimotor cortex. 
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ower can be associated with the selection of a visuospatial represen-

ation stored in working memory, the suppression in mu and beta fre-

uencies over contralateral centro-parietal areas can be linked to the

oncurrent selection of a motor code associated with the cued visual

eature. The stronger suppression of mu and beta power following the

elective retro-cues appeared both when location and when orientation

as the relevant feature. This clearly shows that such motor-related pro-

essing is not specific to the selection of individual items from working

emory ( Boettcher et al., 2021 ; Schneider et al., 2017 ; van Ede et al.,

019 ). 

The second experiment focused on the question whether the pre-

ise definition of the upcoming task is a prerequisite for the develop-

ent of a motor representation in working memory. Olivers and Roelf-

ema (2020) proposed that the difference between attended and non-

ttended information stored in working memory might be the coupling

f a sensory representation with an action plan. However, it remains un-

lear whether this coupling requires the precise knowledge of the action

o be executed next or whether it also happens when the to-be-executed

ction is still uncertain. In the latter case, a prospective motor code

ould be created for dealing with the continuous report task (see Ex-

eriment 1), even though it would not be necessary for the visual com-
12 
arison of the memory probe with the stored information (recognition

ask). 

The current study strongly speaks in favour of this latter assump-

ion. Analogous to Experiment 1, the channel-based analysis revealed

 stronger suppression of mu and beta power at posterior and centro-

arietal sensors following the selective cuing of the location or orien-

ation of the stored visual object (i.e., following the first retro-cue).

his effect was stronger at electrodes contralateral to the side of the

o-be-executed actions, but only for the centro-parietal electrode clus-

ers over left and right sensorimotor cortex (see Fig. 6 ). Moreover, the

C clustering approach strengthened our assumption that this oscillatory

ffect was linked to motor-related processes and not simply related to

eature selection effects reflected in oscillatory patterns in more poste-

ior brain regions. Again, the left-hemispheric (contralateral) and right-

emispheric (ipsilateral) IC cluster featured the typical double spectral

eaks in mu and beta frequency ranges and showed the highest esti-

ated dipole density in sensorimotor and pre-motor cortex. Compara-

le to Experiment 1, only the contralateral cluster revealed a stronger

uppression of mu and beta power following the selective feature cues.

hus, Experiment 2 shows that a motor-related code was selected at a

ime when it was not yet clear whether it would be required for the next
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Fig. 8. Task cue effects for contralateral vs. ipsilateral mu/beta IC clusters (Experiment 2). Panel A depicts the difference in oscillatory power for all pairwise 

contrasts between the three task cues for the left-hemispheric IC cluster. Time-frequency clusters differing between the conditions are indicated by a solid (-) line. 

Panel B shows the spectral power for the left-hemispheric IC cluster. Panel C and D depict the same results for the right-hemispheric IC cluster. 
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ction to be performed. The relevance of this oscillatory effect for be-

avioural performance was indicated by a comparison of fast vs. slow

esponse trials within the experimental conditions. Greater suppression

f mu oscillatory power prior to the presentation of the memory probe

isplay was associated with fast responses (see Fig. 9 ) and this effect

nly occurred for the contralateral mu/beta IC cluster. 

In line with these findings, Henderson, Rademaker and Ser-

nces (2021) proposed that information stored in working memory can

e represented in a rather flexible format, based on the requirements of

he task at hand. For example, when it is required to compare the rep-

esentation of a visual stimulus to a memory probe, the stored mental

epresentation might be based on a “retrospective ” visual code. On the

ther hand, when the information stored in working memory is used

o precisely manipulate an object by means of a goal-directed move-

ent, a prospective motor code might additionally be required. This is

n line with the pattern of oscillatory activity following the task cues.

he contralateral mu/beta IC cluster featured a stronger suppression of

scillatory power following a selective task cue than following a neu-

ral cue (i.e., no task definition until memory probe presentation). This

attern, however, differed between the different task cues. Following
13 
he continuous report task cue, we observed a stronger suppression of

oth mu and beta frequencies (see Fig. 8 A), whereas this modulation of

scillatory power was limited to the mu frequency range following the

ecognition task cue. In contrast to the continuous report task where

he participant has all the necessary information in working memory

o respond as soon as the memory probe appears, one must consider

ew information (the probe stimulus) and compare it to the contents

f working memory in the recognition task. Therefore, it is not possi-

le to respond immediately, but only after the memory probe has been

ompared to the relevant information stored in working memory. It is in-

eresting that there is still some motor preparatory activity (see Fig. 8 A;

ecognition vs. neutral task cue) in this case, which further strengthens

he notion of a motor planning process even when the actual response

o be executed is still ambiguous (see also: Nasrawi & van Ede, 2022 ). 

Further, when comparing the two selective task cue conditions di-

ectly, the contralateral IC cluster revealed a stronger suppression of

u and beta oscillatory power prior to a cued continuous report task.

his suggests that subjects potentially relied more strongly on a prospec-

ive motor code when preparing for the continuous report task. Alter-

atively, subjects might have been preparing for two different tasks in
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Fig. 9. Response time effects for contralateral vs. ipsilateral mu/beta IC clusters (Experiment 2). Panel A depicts the oscillatory power of fast and slow trials and 

their difference for the left-hemispheric IC cluster. The time-frequency clusters differing between the conditions are indicated by a solid (-) line. Panel B shows the 

same for the right-hemispheric IC cluster. 
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erms of the mere motor requirements. While the continuous report task

equired an arm movement (in order to move the computer mouse), the

ecognition task required simply a key press (i.e., a finger movement).

urthermore, it has to be considered that the comparison of the two

elective task cue conditions might be confounded by task difficulty.

n this sense, different oscillatory patterns of the contralateral mu/beta

C cluster between the continuous report and recognition task would

ot be directly based on differences in the type of mental represen-

ation required (prospective vs. retrospective mental representations).

ather, the preparation for a generally more difficult task could be as-

ociated with the fact that motor planning processes become necessary

o a greater extent even before memory probe presentation. Based on the

urrent experiment, we cannot distinguish between these alternative ex-

lanations. To allow for a more specific conclusion in this regard, the
 a  

14 
wo tasks need to be linked to identical motor responses and matched

n terms of difficulty. Nonetheless, the present data clearly show that

ompared to the neutral condition, both selective cues brought about a

urther specification of the mental representation of the to-be-executed

ask. 

. Conclusion 

The current study sheds light on the role of motor representations for

he goal-oriented processing of information in working memory. The

rst experiment showed that the retrospective selection of object fea-

ures can entail the selection of corresponding motor representations.

his shows that individual features of a visual object can also be stored

nd selected as a visual (input) and motor (output) code. The second
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xperiment further highlighted that such motor codes are prospectively

enerated even when the exact to-be-performed task is not fully spec-

fied. Thus, it can be assumed that the observed effects in the mu and

eta frequency range reflect a higher-level representational state of the

tored working memory content that serves as a basis for later response

lanning processes once the to-be-executed task was cued. This shows

hat working memory flexibly stores different kinds of memory represen-

ations in such a way that the best possible conditions for the execution

f a given task are provided. 
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