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Abstract 6 

The topographical distribution of oscillatory power in the alpha band is known to vary 7 

depending on the current focus of spatial attention. Here, we investigated to what extend 8 

univariate and multivariate measures of post-stimulus alpha power are sensitive to the 9 

required spatial specificity of a task. To this end, we varied the perceptual load and the 10 

spatial demand in an auditory search paradigm. A centrally presented sound at the 11 

beginning of each trial indicated the to-be-localized target sound. This spatially unspecific 12 

pre-cue was followed by a sound array, containing either two (low perceptual load) or four 13 

(high perceptual load) simultaneously presented lateralized sound stimuli. In separate task 14 

blocks, participants were instructed either to report whether the target was located on the 15 

left or the right side of the sound array (low spatial demand) or to indicate the exact target 16 

location (high spatial demand). Univariate alpha lateralization magnitude was neither 17 

affected by perceptual load nor by spatial demand. However, an analysis of onset latencies 18 

revealed that alpha lateralization emerged earlier in low (vs. high) perceptual load trials as 19 

well as in low (vs. high) spatial demand trials. Moreover, across all conditions, participants 20 

with earlier alpha lateralization onset showed faster response times. Finally, we trained a 21 

classifier to decode the specific target location based on the multivariate alpha power scalp 22 

topography. A comparison of decoding accuracy in the low and high spatial demand 23 

conditions suggests that the amount of spatial information present in the scalp distribution 24 

of alpha-band power increases as the task demands a higher degree of spatial specificity. 25 

Altogether, the results offer new insights into how the dynamic adaption of alpha-band 26 

oscillations in response to changing task demands is associated with post-stimulus 27 

attentional processing.   28 

Keywords: alpha oscillations, EEG, multivariate pattern analysis, selective attention, spatial 29 

specificity, sound localization  30 

 31 
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1. Introduction 32 

In everyday environments, containing multiple competing sensory inputs, focusing spatial 33 

attention on relevant information while ignoring or suppressing irrelevant information is 34 

crucial to engage in goal-directed behaviour. Consistently, covert shifts of spatial attention 35 

have been shown to improve various aspects of behavioural performance, including visual 36 

spatial acuity (reviewed by Anton-Erxleben & Carrasco, 2013), contrast sensitivity (Carrasco, 37 

Penpeci-Talgar, & Eckstein, 2000), or the rate of information accumulation (Carrasco & 38 

McElree, 2001). On the electrophysiological level, asymmetric modulations of parieto-39 

occipital alpha-band power present a robust signature of spatial attentional orienting. 40 

Typically, alpha-band power decreases contralateral to the attended location and / or 41 

increases over ipsilateral scalp sites. This phenomenon of alpha power lateralization has 42 

been found in response to anticipatory shifts of attention (Foxe, Simpson, & Ahlfors, 1998; 43 

Worden, Foxe, Wang, & Simpson, 2000), when retro-actively attending to working memory 44 

representations (Poch, Capilla, Hinojosa, & Campo, 2017; Schneider, Mertes, & Wascher, 45 

2016), as well as during post-stimulus attentional processing (e.g., in auditory or visual 46 

search paradigms; Bacigalupo & Luck, 2019; Klatt, Getzmann, Wascher, & Schneider, 2018b).  47 

 Accumulating evidence suggests that scalp-level alpha-band activity not only reflects 48 

the attended hemifield but is tuned specifically to the attended visual field location 49 

(Bahramisharif, Heskes, Jensen, & van Gerven, 2011; Rihs, Michel, & Thut, 2007). Moreover, 50 

this spatial selectivity is also reflected in the retinotopic organization of alpha sources 51 

(Popov, Gips, Kastner, & Jensen, 2019). First evidence for comparable ‘spatial tuning’ of 52 

alpha-band oscillations in the auditory domain comes from a recent study by Deng and 53 

colleagues (Deng, Choi, & Shinn-Cunningham, 2020) who found that the topographic 54 

distribution of posterior alpha-band lateralization changes monotonically as the focus of 55 

auditory spatial attention shifts in space.  56 

Notably, recent evidence suggests that the degree of spatial specificity reflected in 57 

the scalp distribution of alpha-band power also depends on the current task demands 58 

(Feldmann-Wüstefeld & Awh, 2019; Voytek et al., 2017). Specifically, two studies of visual 59 

anticipatory spatial attention, using multivariate inverted encoding models (IEM), 60 

demonstrated that the spatial selectivity of alpha activity increased when participants 61 

voluntarily focused on a narrow rather than a broad region of space (Feldmann-Wüstefeld & 62 
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Awh, 2020) and scaled to the degree of certainty of a central cue that indicated the location 63 

of an upcoming target (Voytek et al. 2017).  64 

Consistently, in an auditory spatial attention study, focusing on post-stimulus 65 

attentional processing, we found that task-demands shape the reliance on alpha-band 66 

mediated post-stimulus processing. That is, auditory post-stimulus alpha lateralization was 67 

only present in a spatially specific sound localization task, whereas it was absent in a simple 68 

sound detection paradigm (Klatt et al. 2018b, see also Deng et al. 2019). In the present 69 

study, we set out to further investigate to what extent attentional modulations of post-70 

stimulus alpha power capture the spatial demands of a sound localization task on a more 71 

fine-grained scale. To this end, we varied both the perceptual load and the spatial demand of 72 

the task. That is, participants were asked to localize a target sound among a set of either two 73 

(low perceptual load) or four (high perceptual load) concurrently presented sounds in a 74 

lateralized sound array. In separate task bocks, they either indicated (a) whether the target 75 

was present on the left or the right side (i.e., two response options, low spatial demand) or 76 

(b) reported the exact target location (i.e., four response options, high spatial demand). On 77 

the behavioural level, we expected that high perceptual load (compared to low load) and 78 

high spatial demand (compared to low spatial demand) would present the more challenging 79 

listening situation, resulting in slower response times and lower sound localization accuracy. 80 

Beyond that, attempting to replicate previous results, we hypothesized that post-stimulus 81 

modulations of alpha-band power should index the attended target location, while the 82 

magnitude thereof should not be affected by perceptual load (Klatt et al., 2018b). This 83 

should be evident in a hemispheric lateralization of alpha-band power over parieto-occipital 84 

electrode sites in both low and high perceptual load trials.  85 

Further, the critical aim of this study was to assess whether the required degree of 86 

behavioural spatial specificity (low vs. high spatial demand) affects the spatial specificity of 87 

the alpha power signal. If this is the case, this should be either evident in a modulation of 88 

alpha lateralization magnitude and / or captured by the scalp distribution of alpha-band 89 

power. Hence, we applied both univariate as well as multivariate analysis techniques to 90 

evaluate alpha-band power modulations depending on the spatial (and perceptual) demands 91 

of the task. Finally, we assessed alpha lateralization onset latencies to explore whether the 92 

time course of alpha-band activity is likewise modulated by the required degree of spatial 93 

specificity or perceptual load. Specifically, if slower sound localization performance in high 94 
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spatial demand or high perceptual load conditions coincides with slower post-stimulus 95 

attentional processing, this should be reflected in delayed onset latencies of alpha 96 

lateralization. Such a time-resolved modulation of attentional alpha-band activity is, for 97 

instance, suggested by Foster and colleagues (Foster, Sutterer, Serences, Vogel, & Awh, 98 

2017), who showed that the onset latency of location-selective alpha-band channel tuning 99 

functions (reconstructed from the topographic distribution of alpha-band oscillatory power) 100 

occurred later in time for trials with slow compared to fast responses as well as for a hard 101 

compared to an easier search condition.  102 

 103 

2. Methods 104 

2.1 Ethics statement 105 

The study was approved by the Ethical Committee of the Leibniz Research Centre for 106 

Working Environment and Human Factors and conducted in accordance with the Declaration 107 

of Helsinki. All participants provided written informed consent prior to the beginning of the 108 

experimental procedure.  109 

 110 

2.2  Participants 111 

19 participants were recruited to take part in the study. Hearing acuity was assessed using a 112 

pure-tone audiometry (Oscilla USB 330; Inmedico, Lystrup, Denmark), presenting eleven 113 

pure-tone frequencies in-between 125 Hz and 8000 Hz. One participant had to be excluded 114 

due to a unilateral, mild to moderate hearing impairment in the right ear (hearing thresholds 115 

of up to 35 – 50 dB hearing level). All other participants showed no signs of hearing 116 

impairment (hearing thresholds ≤ 25 dB). Another participant did not correctly follow the 117 

task instructions and was also excluded. Thus, the final sample included 17 subjects (mean 118 

age 23.29 years, age range 19- 30, 9 female), all of which were right-handed as indicated by 119 

the Edinburgh Handedness Inventory (Oldfield, 1971). The sample size we aimed at was 120 

chosen to be comparable to previous publications from the lab that investigated similar 121 

electrophysiological measures (e.g., Klatt, Getzmann, Wascher, & Schneider, 2018b, 2018a). 122 

All participants had normal or corrected-to-normal vision, reported no history of or current 123 

neurological or psychiatric disorders and received course credit or financial compensation 124 

(10€/hour) for their participation.  125 

 126 
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2.2 Experimental setup and stimuli 127 

The experiment was conducted in a dimly illuminated, anechoic, and sound-attenuated 128 

room (5.0 × 3.3 × 2.4m³). Pyramid-shaped foam panels on ceiling and walls and a woolen 129 

carpet on the floor ensure a background noise level below 20dB(A). Participants were seated 130 

in a comfortable chair with their head position held constant by a chin rest. A semicircular 131 

array of nine loudspeakers (SC5.9; Visaton, Haan, Germany) was mounted in front of the 132 

subject at a distance of ~1.5 meters from the subject’s head and at a height of ~1.3 meters 133 

(approximately at ear level). Only five loudspeakers, located at azimuthal positions 134 

of -90°, -30°, 0°, 30°, and 90° respectively, were used for the present experimental setup. A 135 

red, light-emitting diode (diameter 3 mm) was attached right below the central loudspeaker. 136 

The diode remained turned off during the experiment, but served as a central fixation target.   137 

As sound stimuli, eight familiar animal vocalizations (‘birds chirping’, ‘dog barking’, 138 

frog croaking’, ‘sheep baaing’, ‘cat meowing’, ‘duck quacking’, ‘cow mooing’, ‘rooster 139 

crowing’) were chosen from an online sound archive (Marcell, Borella, Greene, Kerr, & 140 

Rogers, 2000). The original sounds were cut to a constant duration of 600 ms (10 ms on/off 141 

ramp), while leaving the spectro-temporal characteristics unchanged. The overall sound 142 

pressure level of the sound arrays, containing either two or four concurrently present 143 

sounds, was about 63 dB(A) and 66 dB(A), respectively. The target sounds, presented in 144 

isolation from a central position, had a sound pressure level of 60 dB(A).  145 

 146 

2.3 Procedure, task, and experimental design 147 

The experiment consisted of an auditory search paradigm implementing a sound localization 148 

task. The sequence of events in a given trial is depicted in Figure 1. Each trial began with a 149 

silent period of 500 ms. Then a sound stimulus was presented from a central position (0° 150 

azimuth angle) for 600 ms, serving as a cue that indicated the to-be-localized target in a 151 

given trial. The latter was followed by a 1000 ms silent inter-stimulus-interval and the sound 152 

array (600 ms). The sound array contained either two (i.e., low perceptual load, 50%) or four 153 

(i.e., high perceptual load, 50%) simultaneously present lateralized sound stimuli. In low 154 

perceptual load trials, the sounds could occur at either of the four lateralized loudspeaker 155 

positions (-90°, -30°, 30°, 90° azimuth), with the restriction that the two sounds (i.e., the 156 

target and a non-target sound) were always present in different hemi-fields. Accordingly, in 157 

high perceptual load trials, in which the target sound was presented together with three 158 
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non-target sounds, all four lateralized active loudspeakers were used. In separate task 159 

blocks, participants either indicated whether the target sound was present on the left versus 160 

right side (i.e., low spatial demand, lsd) or indicated the exact target position (i.e., high 161 

spatial demand, hsd). In addition, both task blocks incorporated a proportion of target-162 

absent trials that required no response. Target-absent trials were included to ensure that 163 

selectively listening to the input from only one side of the stimulus array presented no viable 164 

strategy in low spatial demand task blocks. That is, if the sound array always contained a 165 

target sound, subjects could be inclined to simply infer that the target was located on the 166 

left side solely because they didn’t perceive it on the right side (or vice versa). 167 

 

Sound array presentation was followed by a 1600 ms response interval and a 300 ms inter-168 

trial-interval (ITI). In total, each trial lasted for 4600 ms (including the ITI). Participants 169 

indicated their response by pressing one out of four buttons, arranged in a semi-circular 170 

Figure 1. Schematic illustration of the experimental design. A centrally presented target cue indicated the 

relevant target in a given trial. Then, a sound array appeared, containing either two or four simultaneously present 

sounds from lateralized positions. In different task blocks, participants were asked to either indicate whether the 

target was presented on the left or the right side (low spatial demand) or to report the exact target location (high 

spatial demand). In both task blocks, it was also possible that the sound array did not contain the target (i.e., 

target-absent trial). In this case, participants withheld their response. ISI = inter-stimulus-interval, ITI = inter-trial- 

interval. 
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array on a response pad. In high-spatial demand trials, each button corresponded to one of 171 

the loudspeaker positions, such that participants had to press the left-most button when the 172 

target was presented at the left-most loudspeaker, and so on. In low spatial demand trials, 173 

participants only used the two inner response buttons (i.e., the left button for left-target 174 

responses, the right button for right-target responses). Participants were instructed to 175 

always respond as accurately and as fast as possible, using the index finger of their right 176 

hand. To minimize horizontal eye movements during the EEG-recording, participants were 177 

instructed to fixate the central LED.  178 

Each task block consisted of 672 trials, containing both low and high perceptual load 179 

trials in randomized order. Short, self-paced breaks after every 224 trials and in-between 180 

task blocks were conducted to prevent fatigue. The order of task blocks was 181 

counterbalanced across participants, such that n = 8 subjects first completed the low-spatial 182 

demand condition and n = 9 subjects first completed the high-spatial demand condition. 183 

Prior to the beginning of each task block, participants completed 40 practice trials to 184 

familiarize with the task. All participants were presented with the same semi-randomized 185 

selection of trials. Specifically, in both task blocks, the same selection of 672 trials was 186 

presented, but in a different, randomized order. This assured that all differences between 187 

conditions could be ascribed to the task manipulations rather than differences in the 188 

stimulus materials. Each of the eight animal vocalizations served as the target equally often 189 

(i.e., 84 times per block). In addition, the target sound appeared equally often at each of the 190 

four possible sound speaker locations (i.e., 56 times per location and perceptual load per 191 

block). This also ensured that the number of left (1/3) vs. right (1/3) responses in low-spatial 192 

demand trials as well as the number of outer-left (1/5), inner-left (1/5), inner-right (1/5), and 193 

outer-right (1/5) responses in high-spatial demand trials was counterbalanced across 194 

subjects. Target-absent trials constituted 1/3rd and 1/5th of all trials in low and high spatial 195 

demand task blocks, respectively. The timing of the stimuli was controlled by custom-written 196 

software. Participants did not receive feedback during the experiment.  197 

Taken together, the present study comprised a 2 x 2 repeated-measures design, 198 

including the within-subject factors spatial demand (low vs. high spatial demand) and 199 

perceptual load (low vs. high perceptual load). Note that there are different ways of defining 200 

perceptual load (for a review see Murphy, Spence, & Dalton, 2017). Here, we refer to 201 

perceptual load as the number of items in the search display. 202 
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2.4 EEG data acquisition  203 

The continuous EEG data were recorded from 58 Ag/AgCl passive scalp electrodes (ECI 204 

Electrocap, GVB-geliMED GmbH, Bad Segeberg, Germany) as well as from left and right 205 

mastoids. Electrode positions corresponded to the international 10-10 system. The 206 

electrooculogram (EOG) was simultaneously recorded from four additional electrodes, 207 

placed lateral to the outer canthus of each eye as well as below and above the right eye. The 208 

ground electrode was placed on the center of the forehead, right above the nasion. The 209 

average of all electrodes served as the online-reference. The data were recorded using a 210 

QuickAmp-72 amplifier (Brain products, Gilching, Germany) and digitized at a sampling rate 211 

of 1 kHz. During the preparation of the EEG cap, all electrode impedances were kept below 212 

10 kΩ.  213 

 214 

2.5 Data analysis  215 

If not stated otherwise, all data analyses were performed using custom MATLAB (R2018b) 216 

code and built-in functions from the Statistics and Machine Learning Toolbox. In a few 217 

specific cases, R (v3.6.1) and RStudio (v1.2.1335) were used (see references to specific R 218 

packages below). The significance of all tests was evaluated at an alpha level of .05. Because 219 

the F-distribution is always asymmetric, reported p-values associated with repeated-220 

measures analysis of variance (ANOVA) are directional (Winter, 2011). Partial Eta Squared 221 

(ηp²) is provided as a standardized measures of effect size for ANOVAs.  222 

 223 

2.5.1 Behavioral  224 

The behavioral parameters that were analyzed were response times (RT) and accuracy (i.e., 225 

percentage of correct responses). Only target-present trials were considered. For accuracy 226 

measures, this selection of trials was required because in target-absent trials a correct 227 

target-absent-categorization (i.e., a volitional omission of a key press) could not be reliably 228 

dissociated from an incorrect, missing response. Mean RTs and accuracy measures per 229 

subject and condition were submitted to a repeated-measures ANOVA. Spatial demand and 230 

perceptual load served as within-subject factors.  231 
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2.5.2 EEG 232 

All EEG data processing was performed using the open-source toolbox EEGLAB (v14.1.2; 233 

Delorme & Makeig, 2004) in combination with custom MATLAB (R2018b) code.  234 

 235 

Preprocessing. The continuous EEG data were band-pass filtered, using a high-pass and a 236 

low-pass Hamming windowed sinc FIR filter. The lower edge of the frequency pass band was 237 

set to 0.1 Hz (filter order: 33000, transition band-width: 0.1 Hz, -6dB cutoff: 0.05 Hz) and the 238 

higher edge of the frequency pass band to 30 Hz (filter order: 440, transition band-width: 7.5 239 

Hz, -6dB cut-off: 33.75 Hz). Then, channels with a normalized kurtosis (20% trimming before 240 

normalization) exceeding 5 standard deviations of the mean were rejected, using the 241 

automated channel rejection procedure implemented in EEGLAB. Malfunctioning channels 242 

that had to be switched off during the recording were identified using custom code and 243 

rejected as well. Altogether, one to nine channels were removed per participant (M = 4.7 244 

channels). The data were re-referenced to the average of all remaining good-quality scalp 245 

channels, excluding EOG electrodes. Data epochs were extracted, ranging from -1000 to 246 

4500 ms relative to target cue onset. For artifact rejection, an independent component 247 

analysis (ICA) was run on the dimensionality reduced data (using a basic PCA 248 

implementation). To speed up ICA decomposition, the data were down-sampled to 200 Hz 249 

prior to running the ICA algorithm. In addition, major artefacts and extremely large potential 250 

fluctuations were removed before running ICA, using the automatic trial-rejection procedure 251 

implemented in EEGLAB (i.e., function pop_autorej). The latter rejects data epochs, 252 

containing data values exceeding a given standard deviation threshold by means of an 253 

iterative procedure (probability threshold: 5 SD, maximum proportion of total trials rejection 254 

per iteration: 5%, threshold limit: 500 µV). The obtained ICA decomposition was back- 255 

projected onto the original, continuous dataset (filtered and re-referenced) with a 1 kHz 256 

sampling rate. The latter was segmented into epochs ranging from -1000 to 4500 ms relative 257 

to target cue onset and baseline-corrected, using the pre-stimulus period of -200 to 0. To 258 

identify artefactual independent components (ICs), the EEGLAB plug-in ICLabel (v1.1, Pion-259 

Tonachini, Kreutz-Delgado, & Makeig, 2019), was applied. ICLabel assigns a label vector to 260 

each IC, indicating the probability that an IC belongs to any of seven possible categories: 261 

brain, muscle, eye, heart, line noise, channel noise, or other. All ICs that received a 262 

probability estimate below 50% for the brain category were considered “artefactual” and 263 
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subsequently subtracted from the data. On average 34.12 ICs (i.e., 59.67 %) were removed 264 

per participants (SD = 3.53). Finally, the automatic trial rejection procedure implemented in 265 

EEGLAB was performed, setting the probability threshold to 5 SD, the maximum proportion 266 

of total trials to-be-rejected per iteration to 5 % and the threshold limit to 1000 µV. On 267 

average, 269 trials (i.e., 22 %) were rejected in the course of this procedure (range 11 – 32 268 

%). Lastly, data from channels that were initially rejected were interpolated using spherical 269 

interpolation. Note that this preprocessing pipeline only served as the basis for the 270 

univariate analysis of alpha-band power. For the multivariate decoding analysis, a simplified 271 

preprocessing pipeline was applied (cf. method section “decoding analysis”).  272 

 273 

Time-frequency decomposition. The time-frequency decomposition of the processed EEG 274 

data was computed using Morlet wavelet convolution as implemented in the build-in 275 

EEGLAB STUDY functions (i.e., newtimef.m). Specifically, the segmented EEG signal was 276 

convolved with a series of complex Morlet wavelets. The frequencies of the wavelets ranged 277 

from 4 Hz to 30 Hz, increasing logarithmically in 52 steps. A complex Morlet wavelet is 278 

defined as a complex sine wave that is tapered by a Gaussian. The number of cycles, that 279 

defines the width of the tapering Gaussian, increased linearly as a function of frequency by a 280 

factor of 0.5. This procedure accounts for the trade-off between temporal and frequency 281 

precisions as a function of the frequency of the wavelet. The number of cycles at the lowest 282 

frequency was 3; the number of cycles at the highest frequency was 11.25. The time period 283 

in-between -400 and -100 ms relative to target cue onset served as a spectral baseline. 284 

 285 

Alpha power lateralization. Spatial shifts of attention following the onset of the sound array 286 

were quantified by assessing lateralized modulations of posterior alpha-band power (8-12 287 

Hz). Specifically, the difference between contralateral and ipsilateral alpha power at a cluster 288 

of posterior electrodes, comprising PO7/8, P7/8, P3/4, and PO3/4, was calculated separately 289 

for each condition and each subject. The selection of electrodes was based on previous 290 

studies of post-stimulus, posterior alpha lateralization (Klatt, Getzmann, Begau, & Schneider, 291 

2019; Schneider, Göddertz, Haase, Hickey, & Wascher, 2019), except that P5/P6 were not 292 

part of the present electrode setup and thus, electrodes P3/4 were included in the electrode 293 

cluster instead. Given that post-stimulus alpha power asymmetries have been shown to 294 

appear as a relatively long-lasting, sustained effect, the mean contralateral-minus-ipsilateral 295 
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differences in power were extracted in a broad 400 ms-time window, ranging from 547 to 296 

953 ms following sound array onset. The time window was set around the peak in the grand 297 

average contralateral minus ipsilateral difference waveform across all conditions and 298 

subjects. The peak was defined as the point in time at which the difference waveform 299 

(following sound array onset, 1600 ms – 3000 ms) reached its most negative amplitude 300 

value. The mean power values per subject and condition were then submitted to a repeated-301 

measures ANOVA, including the within-subject factors spatial demand and perceptual load in 302 

order to assess their effect on alpha lateralization magnitude. For an analogous analysis of 303 

non-lateralized posterior alpha power, please see the supplementary material. 304 

 305 

Alpha lateralization onset latencies. To quantify alpha lateralization onset latency, we used a 306 

combination of the fractional area technique (Kiesel, Miller, Jolicœur, & Brisson, 2008; Luck, 307 

2014) and a jackknife approach (Luck, 2014; Miller, Patterson, & Ulrich, 1998). That is, for 308 

each condition, n subaverage contralateral minus ipsilateral difference waveforms were 309 

created, using a subsample of n-1 waveforms (i.e., each participant was omitted once). In 310 

each of these subaverage waveforms, the point in time at which the negative area under the 311 

curve reached 20% and 50%, respectively (i.e., Fractional Area Latency, denoted as FAL) was 312 

measured, using the MATLAB function latency.m by Liesefeld (2018). Negative area was 313 

measured relative to zero and in-between a broad time window from 1600 to 3000 ms post-314 

cue-onset (i.e., 1600 ms corresponds to sound array onset). Note that reported mean 315 

latency differences (denoted as D) correspond to the differences in onset latency between 316 

conditions, measured in the condition-grand averages. According to Miller, Patterson, & 317 

Ulrich (1998), the jackknife-based SED was calculated as follows:  318 

 319 𝑆𝐸𝐷 =  √𝑁−1𝑁  ∑ (𝐷−𝑖 −  𝐽 ̅)2𝑁𝑖 =1 . 320 

 321 𝐷−𝑖  (for I = 1, …, N, with N representing the sample size) denotes the latency difference for 322 

the subsample, including all subject except for subject 𝑖. 𝐽 ̅is the mean difference across all 323 

subsamples (i.e., 𝐽 ̅ =  ∑ 𝐷−𝑖  /  𝑁 ).  324 

The 20%-FAL and 50%-FAL values were submitted to separate repeated-measures 325 

ANOVAs, including the within-subject factors spatial demand and perceptual load. Because 326 
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the use of subsample average measures artificially reduces the error variance, the error 327 

terms in the respective ANOVA will be underestimated, while the F-values will be 328 

overestimated. To account for this bias, the F-correction according to Kiesel, Miller, Jolicœur, 329 

& Brisson (2008) was applied. Corrected F-values are denoted as Fcorr. The corresponding p-330 

value for the corrected F statistic was computed using the online calculator by Soper (2020). 331 

 332 

Brain-behavior correlations. To investigate to what extent the timing of alpha laterization 333 

was related to behavioral performance, we used a repeated-measures correlation approach 334 

and the R package rmcorr (Bakdash & Marusich, 2017). Rmcorr determines “the relationship 335 

between […] two continuous variables, while controlling for the […] between-participants 336 

variance” (Bakdash & Marusich, 2017, p. 3). We obtained FAL-measures from the single-337 

subject waveforms (i.e., contralateral minus ipsilateral alpha power) for each of the four 338 

conditions and correlated those with condition-specific mean response times. Here, the 339 

latter were estimated, including only the (correct) trials that remained after EEG-artefact 340 

rejection. Three subjects did not show an alpha lateralization effect (i.e., there was no 341 

negative area) and were thus, excluded from the correlation analysis. The repeated-342 

measures correlation coefficient rrm as well as a 95% confidence interval will be reported. 343 

The corresponding degrees of freedom are calculated as follows (Bakdash & Marusich, 344 

2017):  345 

 346 𝑑𝑓𝑟𝑚𝑐𝑜𝑟𝑟 = 𝑁(𝑘 − 1) − 1,  347 

 348 

where k is the number of repeated measures per participant (i.e., 4) and N is the total 349 

number of participants (i.e., 14).  350 

 351 

Decoding analysis. We attempted to decode the exact location (i.e., outer-left, inner-left, 352 

inner-right, outer-right) of the target sound based on the scalp distribution of alpha-band 353 

EEG power. The decoding procedure was applied separately for the low vs. the high spatial 354 

demand condition to investigate whether the ‘amount’ of spatial information reflected in the 355 

scalp topography of alpha-band power is modulated by the spatial demands of the task. The 356 

factor perceptual load was not considered in the decoding analysis. The decoding analysis 357 

described below was adapted from the analysis code and method provided by Bae & Luck 358 
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(2018). Note that for the present decoding analysis, no artifact rejection was performed on 359 

the EEG data. That is, the EEG preprocessing was limited to epoching the continuous data to 360 

create single-trial segments (i.e., ranging from -1000 to 4500 ms relative to cue onset) and 361 

baseline correction (i.e., using the 200 ms time period prior to cue onset as a baseline). 362 

Further, target-absent trials, incorrectly answered trials as well as trials with a response time 363 

< 200 (i.e., premature responses) were excluded. Running decoding analyses on neural time 364 

series data without artifact rejection and minimal preprocessing has previously been 365 

demonstrated to result in above-chance decoding accuracy (Grootswagers, Wardle, & 366 

Carlson, 2017) and prevents unwanted artefacts and spurious decoding due to high-pass 367 

(van Driel, Olivers, & Fahrenfort, 2021) or low-pass (Grootswagers et al., 2017) filtering. 368 

Instead, to improve the signal-to-noise ratio, after extracting alpha power from the signal, 369 

the data belonging to a given target location category were averaged across multiple trials. 370 

These averages (rather than single-trial data) served as the input for the to-be-trained 371 

classifier. The classifier was trained to discriminate between each target location and all 372 

other possible locations. To compute decoding accuracy, the classifier was then applied to 373 

the average of a set of trials for each location that was not part of the training data. 374 

Decoding was considered correct if the classifier correctly determined which one of the four 375 

possible locations was the target location. Thus, chance level decoding accuracy was at 25%.  376 

 Specifically, analogous to Bae & Luck (2018), the following decoding procedure was 377 

applied: The segmented EEG at all scalp electrodes was bandpass filtered at 8 to 12 Hz, using 378 

EEGLAB’s eegfilt() function, which applies two-way least-squares finite impulse response 379 

(FIR) filtering. Then, the Hilbert transform of the bandpass filtered EEG signal was computed 380 

to obtain the magnitude of complex analytic signal. The latter was squared to obtain the 381 

total power in the alpha frequency band (i.e., 8-12 Hz) at each time point. Subsequently, to 382 

increase the efficiency of the analysis and decrease computation time, the data was 383 

subsampled, keeping only every 20th data point in-between -500 and 4500 ms relative to 384 

target sound onset (i.e., corresponding to a sampling rate of 50 Hz). This results in a 4-385 

dimensional data matrix for each participant, including the dimensions of time (250 time 386 

points), location (4 different categories), trial (varies depending on the subject, in-between 387 

68 and 112 trials for each location), and electrode site (the 57 scalp channels). To classify the 388 

location of the target sound based on the scalp topography of the alpha power signal over 389 

the 57 scalp electrodes (i.e., mastoids and EOG electrodes were excluded), we used a 390 
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combination of a support vector machine (SVM) and error-correcting output codes (ECOC; 391 

Dietterich & Balkiri, 1995). The ECOC model, implemented using the MATLAB function 392 

fitcecoc(), combines the results from multiple binary classifiers and thus, solves multiclass 393 

categorization problems.  394 

Decoding was performed separately for each of the 250 time points in-between -500 395 

and 4500 ms relative to target sound onset. At each time point, separate trials were used to 396 

train and test classifier performance, respectively. Specifically, a fivefold cross validation 397 

procedure was applied: First the data were sorted into four ‘location bins’, containing only 398 

trials with the same target location. In each location bin, the trials were divided into five 399 

equally sized sets of trials, each of which contained in-between 13 and 22 trials (depending 400 

on condition and subject, MDN [lsd] = 20, MDN [hsd] = 18). That is, to ensure that an equal 401 

number of trials was assigned to each of the five sets for each location bin, the minimum 402 

number of trials per subject for a given location bin was determined (denotes as n), and n / 5 403 

trials were assigned to each set. In case the total trial number for a given location was not 404 

evenly divisible by five, excess trials were randomly omitted. The trials for a given location 405 

bin were averaged, resulting in a matrix of 5 (subsample averages) x 4 (location bins) x 57 406 

(electrodes) to be analyzed for each time point. Notably, 4 of the 5 subsample averages 407 

served as the training set, while the remaining group average served as a testing dataset. In 408 

the training phase, the data from the four (of the total 5) subsample averages was 409 

simultaneously submitted to the ECOC model with known location labels to train four SVMs 410 

(one for each location). A one-versus-all approach was chosen such that each SVM was 411 

trained to perform a binary classification, that is, to discriminate one specific location from 412 

all other locations. Subsequently, in the test phase the unused data (i.e., the subsample 413 

average that were reserved for testing) was fed into the set of four trained SVMs to classify 414 

which of the 4 locations served as the target location in each of the subsample averages. 415 

Specifically, the MATLAB predict() function was used to classify the input data by minimizing 416 

the average binary loss across the four trained SVMs. Essentially, the output of the predict() 417 

function provides a location label for each of the 4 input subsample averages. By comparing 418 

the true location labels to the predicted location labels, decoding accuracy was computed.  419 

 This training-and-testing process was applied five times such that each subsample 420 

average served as the testing dataset once. Further, the entire procedure was iterated 10 421 

times. On each iteration, the trials in each location bin were randomly assigned to the five 422 
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sets (i.e., to create new subsample averages). Finally, decoding accuracy was collapsed 423 

across the four locations, the five cycles of partitioning trials into sets, and the 10 iterations, 424 

resulting in a decoding percentage for each time point. After obtaining a decoding 425 

percentage for all time points of interest, a five-point moving average was applied to smooth 426 

the averaged decoding accuracy values and to minimize noise.  427 

 428 

Statistical analysis of decoding accuracy. Although decoding was performed for all time 429 

points in-between -500 to 4500 ms relative to sound onset, the statistical analysis focused 430 

on the time interval following sound array presentation until the end of the maximal 431 

response interval (i.e., 1600 – 3800 ms relative to sound onset). We restricted the statistical 432 

analysis to this time interval because the goal was to test decoding accuracy during the post-433 

stimulus interval (i.e., when post-stimulus attentional processing takes place). In addition, 434 

because participants did not have any knowledge about where the target is going to appear 435 

prior to sound array onset, there should be no location-specific information present in-436 

between target cue and sound array-onset. Briefly, the statistical analysis of decoding 437 

accuracy comprised two separate approaches: First, to confirm that the scalp topography of 438 

post-stimulus alpha-band power contains information about the target location, we 439 

compared decoding accuracy to chance level (i.e., 25% – because we used 4 locations) at 440 

each time point. This was done separately for the two spatial demand conditions. Second, 441 

we compared decoding accuracy in the low and high spatial demand condition to evaluate 442 

whether the amount of spatial information that is reflected in the scalp topography of alpha-443 

band power is sensitive to the spatial demands of the task. At both stages, we controlled for 444 

multiple comparisons (see below for details). 445 

 446 

Decoding accuracy within conditions. We used a non-parametric cluster-based permutation 447 

analysis to compare decoding accuracy to chance level (i.e., 25%) at each time point. Again, 448 

we adopted the analysis code provided by Bae & Luck (2018). Using one-sided one sample t-449 

tests, the average decoding accuracy across subjects was compared to chance level, 450 

separately for each time-point. Because SVM decoding does not produce meaningful below-451 

chance decoding results, a one-sided t-test is justified. Then, clusters of at least two adjacent 452 

time points with a significant single-point t-test (i.e. p < .05) were identified. The t-values 453 

within a given cluster were summed, constituting the so-called cluster mass. To determine 454 
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whether a given cluster mass is greater than what can be expected under the null 455 

hypothesis, a Monte Carlo null distribution of cluster mass values was constructed. In a first 456 

step, this involved estimating the decoding accuracy that would be obtained if the classifier 457 

randomly guessed the target sound location. That is, from an array containing all possible 458 

target labels (1, 2, 3, 4), we randomly sampled an integer as the simulated response of the 459 

classifier for a given target location. If the response matched the true target value, the 460 

response was considered correct. This sampling procedure was repeated 200 times (4 461 

locations x 5 cross-validations x 10 iterations) and for each time point of interest in-between 462 

1600 ms to 3800 ms. The 200 scores for each time point were averaged to obtain the mean 463 

simulated decoding accuracy, resulting in a time series of decoding accuracy values. 464 

Analogous to the procedure that was applied to the actual EEG data, the latter was 465 

smoothed using a five-point running average filter. The procedure was repeated 17 times, to 466 

obtain a simulated decoding accuracy time series for each of our 17 participants. Then, using 467 

the simulated decoding accuracy time series, the maximum cluster mass was computed, 468 

using the procedure described above. That is, if there was more than one cluster of 469 

significant t-values, the mass of the largest cluster was selected.  470 

Finally, to construct a null distribution of maximum cluster mass values that can be 471 

expected under the null hypothesis, we repeated the simulation procedure (i.e., simulating 472 

decoding accuracy that would be obtained by chance) 10,000 times. For each cluster in the 473 

decoding results, the obtained cluster t mass was compared to the distribution of cluster t 474 

mass values that was constructed under the assumption that the null hypothesis is true. If 475 

the observed cluster t mass value was in the top 95% of the null distribution (i.e. α = .05, 476 

one-tailed), the null hypothesis was rejected and decoding accuracy was considered above 477 

chance. Note that this procedure was separately applied to both the low spatial demand 478 

condition and the high spatial demand condition.  479 

To find the p-value associated with a specific cluster, we examined where within the 480 

null distribution does each observed cluster t mass value fall. That is, the p-value was based 481 

on the inverse percentile (computed using the invprctile() function) of the observed cluster-482 

level t mass within the null distribution. If the observed cluster-level t-mass value exceeded 483 

the maximum cluster-level t-mass of the simulated null distribution, the respective p-value is 484 

reported as p < 10-4. The latter corresponds to the resolution of the null distribution (i.e., 1 / 485 

number of permutations).  486 
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Decoding Accuracy in low vs. high spatial demand blocks. To investigate, whether or not the 487 

amount of spatial information reflected by the scalp topography of alpha power differs 488 

depending on the spatial demands of the task, decoding accuracy in the two task conditions 489 

was compared, using a cluster-corrected sign-permutation test. To this end, the 490 

cluster_test() and cluster_test_helper() functions provided by Wolff, Jochim, Akyürek, & 491 

Stokes (2017) were applied. The sign-permutation test is a non-parametric test that makes 492 

no assumption of the distribution of the data. As input data, the same time window that was 493 

also used for the statistical analysis of decoding accuracy within conditions was selected (i.e., 494 

1600 – 3800 ms). Specifically, the cluster_test_helper() function generates a null distribution 495 

by randomly flipping the sign of the input data of each participant with a probability of 50%. 496 

This procedure was repeated 10,000 times. The resulting distribution served as input to the 497 

cluster_test() function, identifying those clusters in the actual data that are greater than 498 

would we expected under the null hypothesis. The cluster-forming threshold as well as the 499 

cluster significance threshold were set to p < .05. Because we had a clear hypothesis 500 

regarding the direction of the effect (that is, decoding accuracy in the high spatial demand 501 

condition should be higher compared to the low spatial demand condition), the cluster-502 

corrected sign-permutation test was one-sided.  503 

In addition, to assess the overall difference in decoding ability within the post-504 

stimulus period, the decoding accuracy was averaged across time in the approximate time 505 

window that resulted in significant within-condition decoding results (i.e., 1800 – 3200 ms) 506 

and submitted to a one-sided permutation test. To this end, the GroupPermTest() function 507 

provided by Wolff et al. (2017) was applied (using nSims = 10,000 permutations). 508 

    509 

2.6 Data/code availability statement 510 

Data and analysis code associated with this manuscript will be made available in the open 511 

science framework repository upon publication of this manuscript.  512 

 513 

3. Results 514 

3.1 Behavioral data 515 

Behavioral results are displayed in Figure 2. The analysis of response times revealed a main 516 

effect spatial demand, F(1,16) = 68.75, p < .001, ηp² = 0.81, with slower responses in high 517 

spatial demand blocks (M = 834.79 ms, SD = 92.89) compared to low spatial demand blocks 518 
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(M = 713.61 ms, SD = 123.94). In addition, there was a significant main effect of perceptual 519 

load, F(1,16) = 161.57, p < .001, ηp² = 0.91, with slower responses in high-load trials (M = 520 

843.92 ms, SD = 116.19) compared to low-load trials (M = 704.48 ms , SD = 98.47). For 521 

response times, there was no significant interaction of spatial demand and perceptual load, 522 

F(1,16) = 2.59, p = .13, ηp² = 0.14. A nearly analogous pattern of results was revealed by the 523 

analysis of the percentage of correct responses. That is, participants responded more 524 

accurately in low spatial demand blocks (M = 92.54 %, SD = 4.63) compared to high spatial 525 

demand blocks (M = 88.84 %, SD = 4.80), F(1,16) = 21.58, p < .001, ηp² =  0.57). In addition, 526 

the percentage of correct responses was higher in low-load trials (M = 96.57 %, SD = 2.72), 527 

compared to high-load trials (M = 84.81 %, SD = 7.32), F(1,16) = 53.70, p < .001, ηp² =  0.77. 528 

Further, a significant interaction of spatial demand and perceptual load, F(1,16) = 10.78, p = 529 

.005, ηp² = 40, complements the descriptive observation that the difference in accuracy 530 

between low and high perceptual load was slightly greater in high spatial demand blocks (M 531 

= 13.66 %, SD = 7.24) than in low spatial demand blocks (M = 9.87 %, SD = 6.82).  532 

 

Figure 2. Behavioral performance. Solid, horizontal lines indicate the mean percentage of correct responses (A) 

or mean response times (B) in a given condition. Colored dots correspond to individual response measures. Please 

note that the y-axis for the % of correct responses does not originate at 0. 

 

 

3.1 Alpha power lateralization 533 

Figure 3A illustrates the time course of the contralateral minus ipsilateral differences in 534 

alpha power at a cluster of posterior scalp electrodes. A repeated-measures analysis of the 535 
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mean alpha power amplitudes in-between 547 to 953 ms post-sound array onset revealed 536 

no significant modulation by spatial demand, F(1,16) < .0.01, p = .998, ηp² <  0.001, neither 537 

by perceptual load, F(1,16) = 0.04, p = .850, ηp² = 0.002, nor an interaction between the two 538 

factors, F(1,16) = 0.14, p = 0.710, ηp² = 0.009.  539 

 540 

 

 

3.2 Alpha lateralization onset latencies 541 

To investigate whether the time-course of alpha lateralization was affected by the task 542 

demands, we assessed alpha lateralization onset latencies. Figure 3B and C illustrate the 543 

points in time where the area under the condition-specific difference curves reaches 20% 544 

and 50%, respectively (i.e., the 20% FAL and the 50% FAL). The analysis of fractional area 545 

latency (FAL) measures revealed a significant main effect of perceptual load for the 20%-FAL, 546 

Fcorr(1,16) = 5.94, p = .027, and the 50%-FAL, Fcorr(1,16) = 9.17, p = .008. That is, alpha 547 

lateralization emerged earlier in low perceptual load compared to high perceptual load trials 548 

(D20% = 203 ms, SED-20% = 68, D50% = 188 ms, SED-50% = 52). A significant main effect of spatial 549 

demand was only evident for the 50%-FAL, Fcorr(1,16) = 6.00, p = 0.026, indicating earlier 550 

alpha lateralization onset latencies in low spatial demand blocks compared to high spatial 551 

Figure 3. Alpha Power Lateralization. (A) Time course of contralateral minus ipsilateral differences in alpha power 

across a cluster of parieto-occipital scalp electrodes. The grey-filled rectangle highlights the time window used for 

statistical analysis of mean alpha lateralization magnitude. (B) A close-up view of the contralateral minus ipsilateral 

difference waveforms in-between 1800 and 2800 ms. Circles mark the 50% (top) and 20% (bottom) fractional area 

latency (FAL) measures for each condition. (C) A line plot of the respective 50%-FAL (top) and 20%-FAL (bottom) values, 

depending on spatial demand and perceptual load. (D) Scalp topographies based on the contralateral minus ipsilateral 

differences in alpha power in-between 547 to 953 ms following sound array onset (i.e., the time window used for 

statistical analyses).  
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demand blocks (D50% = 124 ms, SED-50% = 57). There were no significant interactions (all Fcorr < 552 

0.73). 553 

 554 

 3.2 Brain-behavior correlation 555 

To assess, whether alpha lateralization onset latency varies with the behavioral response, we 556 

computed the repeated-measures correlation coefficient for the individual subject latency 557 

measures (i.e., no jackknifing was applied) and the individual mean response times. The 558 

latter approach considers the dependencies between the condition-specific measures and 559 

quantifies the common within-individual association across conditions. The analysis revealed 560 

a moderate positive relationship between onset latency and response times such that 561 

subjects with earlier alpha lateralization onset latencies showed shorter response times. This 562 

relationship was significant for both the 20%-FAL measures, rrm (41) = .365, p = .016, 95% CI 563 

[0.065 0.605], and the 50%-FAL, rrm (41) = .373, p = .014, 95% CI [0.073 0.610]. See Figure 4 564 

for a scatter plot of the repeated-measures data, including all four conditions.  565 

 

 

 

Figure 4. Repeated-measures 

correlation between alpha 

lateralization onset latency and 

response time. Each dot represents 

one of four separate observations) for a 

participant, with observations from the 

same participants appearing in the 

same color. That is, each observation 

corresponds to a subject’s mean 
response time (y-axis coordinate) and 

alpha lateralization onset latency (x-

axis coordinate) in one of the four 

conditions. The corresponding colored 

lines show the rmcorr fit for each 

participant. Note that the rmcorr() 

function always fits parallel lines to the 

data (for details, see Bakdash & 

Marusich, 2017). The grey dashed line 

indicates the regression line that would 

result from treating the data as 

independent observations. Three 

subjects were excluded from the 

correlation analysis because they did 

not show an alpha lateralization effect 

(i.e., n = 14). 
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3.4 Decoding analysis 566 

Figure 5A shows the time-course of decoding accuracy for the low vs. high spatial demand 567 

condition, when decoding the exact target sound location based on the topography of alpha-568 

band activity, as well as the difference in decoding accuracy between conditions. Decoding 569 

accuracy starts to rise above chance level (i.e., 25%) at around 1800 ms (i.e., 200 ms 570 

following sound array onset) and at first, increases continuously in both spatial demand 571 

conditions. In the low spatial demand condition, decoding accuracy reaches a peak at around 572 

2180 ms (i.e., 580 ms post-sound onset), remains at this level for a couple hundred 573 

milliseconds and then gradually decreases throughout the remainder of the response 574 

interval; in the high spatial demand condition, decoding accuracy continues to rise beyond 575 

the peak in the low spatial demand condition until around ~2440 ms (i.e., 840 ms post-576 

sound onset), and declines quite immediately thereafter, although it remains on a higher 577 

level compared to the low spatial demand condition. Toward the end of the response 578 

interval (i.e., around 3800 ms), decoding accuracy returns to chance level in both conditions. 579 

The cluster mass test revealed that decoding was significantly greater than chance in both 580 

spatial demand conditions. We identified a significant cluster following sound array onset in 581 

each of the two conditions (p < 10-4, see Figure 5A, solid green and yellow lines). In the high 582 

spatial demand condition, the cluster extends from around 1800 ms to ~3200 ms; in the low 583 

spatial demand condition, the cluster spans a time period in-between ~1900 ms and 2880 584 

ms relative to sound array onset. Note, however, that cluster-based permutation test results 585 

should not be used to derive conclusions about the specific onset or offset of a certain effect 586 

(Sassenhagen & Draschkow, 2019).  587 

The black, dashed line in Figure 5A illustrates the difference in decoding accuracy 588 

between the two spatial demand conditions. A cluster-corrected sign-permutation test 589 

indicated significant differences in decoding ability (p < .01, one-sided test, cluster extending 590 

from ~2440 – 3000 ms), with higher decoding accuracy in the high spatial demand condition 591 

compared to the low spatial demand condition. 592 

Finally, we assessed the overall difference in decoding ability within the post-stimulus 593 

period (specifically, within the approximate time-window that resulted in above-chance 594 

decoding accuracy within both spatial demand conditions). A one-sided permutation test of 595 

the average decoding accuracy between 1800 – 3200 ms consistently revealed a significant 596 

difference in decoding accuracy between the spatial demand conditions (p = .001, Fig. 5B).  597 
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4. Discussion 598 

Sensory stimuli and behavioral demands are constantly subject to change, requiring the 599 

attentive brain to adapt its response to accommodate to those changes. In this study, we 600 

investigated the effects of varying perceptual load and spatial demand in a sound 601 

localization task on post-stimulus alpha-band oscillations. The notion that alpha-band 602 

oscillations track the currently attended location in a spatially fine-tuned manner is relatively 603 

undisputed. However, what remains more elusive is to what degree this spatial specificity 604 

depends on the current task demands. Here, we demonstrate that the amount of spatial 605 

information reflected in the multivariate scalp distribution of alpha power increases when 606 

the task requires a precise sound localization (i.e., indicating the exact stimulus location) 607 

compared to when a rather coarse localization judgment is required (i.e., indicating the 608 

hemifield). In contrast, these task demand-dependent modulations were not captured by 609 

Figure 5. Location decoding based on the multivariate scalp distribution of alpha power. (A) Time-

course of the average decoding accuracy results in the low (yellow) and high (green) spatial demand 

condition, respectively. The colored shading indicates ±1 SEM. Chance-level performance (i.e., 25%) is 

indicated by the grey dashed horizontal line. The yellow and green solid bars indicate significant decoding of 

the target location in the low and high spatial demand condition, respectively. The black solid bar denotes 

significant differences in decoding ability between the low and the high spatial demand condition. Note that 

only time-points in-between 1600 – 3800 ms were considered in the statistical analysis. (B) Boxplots refer to 

the average decoding accuracy in-between 1800 – 3200 ms relative to cue-onset (i.e., 200 – 1600 ms following 

sound array onset). As per convention, boxplots illustrate the interquartile range and the median. Whiskers 

extent to the 1.5 times the interquartile range. The superimposed circles show the average decoding accuracy, 

while the corresponding error bars denote the 95% bootstrap confidence interval of the mean (number of 

bootstrap samples = 10000). 
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the magnitude of univariate parieto-occipital alpha lateralization. Rather, the time course of 610 

alpha power lateralization varied with the task demands as well as with response times.     611 

Behaviorally, the pattern of results was consistent with the well-established observation 612 

that the detection of a target sound in a cocktail-party scenario suffers from additional 613 

concurrent stimuli in the auditory scene (Brungart & Simpson, 2007; Brungart, Simpson, 614 

Ericson, & Scott, 2001; Ericson, Brungart, & Simpson, 2004; Klatt et al., 2018b). Accordingly, 615 

in the present study, participants performed slower and less accurate when the sound array 616 

contained four (high perceptual load) instead of just two sounds (low perceptual load). In 617 

terms of sound localization accuracy, this difference was even more pronounced when they 618 

were asked to report the exact target location (high spatial demand) rather than the target 619 

hemifield (low spatial demand). Certainly, the present set size effect cannot be completely 620 

disentangled from the effects of energetic masking due to the acoustic overlap between the 621 

competing sound sources (cf. Murphy, Spence, & Dalton, 2017). However, most critical for 622 

the intended EEG analysis was the manipulation of spatial demand. As expected, indicating 623 

the exact sound location was more challenging (i.e., slower and less accurate) than simply 624 

determining whether the target was present in the left or right hemispace. Nevertheless, 625 

subjects still managed to perform clearly above chance level (i.e., on average > 80% correct). 626 

 The main question of the present study was: Is the difference in spatial task demands 627 

also reflected in the neural signal? Strikingly, while the classifier could reliably decode the 628 

precise target location in both spatial demand conditions, the amount of spatial information 629 

reflected in the scalp distribution of alpha-band power was higher under high spatial 630 

demand. It should be emphasized that in both spatial demand conditions, participants were 631 

presented with the exact same trials (although in randomly shuffled order). This rules out 632 

that differences between conditions were caused by bottom-up perceptual factors.  633 

The present results extent previous work, using an analogous auditory search task 634 

design, where we demonstrated that the presence of auditory post-stimulus alpha 635 

lateralization was dependent on the task-relevance of spatial information. Specifically, Klatt 636 

et al. (2018b) showed that alpha lateralization was absent in a simple sound detection task 637 

(i.e., when spatial location was completely irrelevant to the task), whereas it reliably 638 

indicated the attended location when participants were asked to localize the target. Here, 639 

we show that post-stimulus alpha oscillations are not only sensitive to such coarse 640 

manipulations of spatial relevance, but rather – when considering the multivariate activity 641 
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patterns – also capture fine-grained adaptions to the required degree of spatial specificity. 642 

However, the curves reflecting decoding accuracy in the low and high spatial demand 643 

conditions do not diverge until about 600 ms following sound array onset; in addition, 644 

statistically significant differences in decoding accuracy were limited to a relatively late 645 

time-window (i.e., > 800 ms following sound array onset; cf. Figure 5A). In contrast, general 646 

decodability of spatial location increases above chance level shortly after sound array onset 647 

and persists well into the response interval. This suggests that, despite the fact that the 648 

spatial demand conditions were blocked (i.e., participants knew beforehand which spatial 649 

specificity would be required), it took several hundred milliseconds to evoke changes in 650 

spatial specificity of the underlying alpha power signal. Such long latencies have also been 651 

reported with respect to voluntary adaptions of the alpha-power signal in a visual spatial 652 

cueing study paradigm, requiring participants to adopt either a narrow or a broad focus of 653 

attention in anticipation of an upcoming search array (Feldmann-Wüstefeld & Awh, 2019).  654 

In the above-mentioned study, Feldmann-Wüstefeld & Awh (2019) computed spatially 655 

selective channel tuning functions (CTF) based on the topography distribution of alpha 656 

power and assessed their slope as a measure of spatial selectivity. Notably, differences in the 657 

CTF slopes between the narrow-focus cue and the broad-focus cue only emerged at 658 

timepoints > 500 ms following cue onset. A previous study by Voytek and colleagues (Voytek 659 

et al., 2017) similarly manipulated the breadth of the attentional focus using a central cue, 660 

pointing to either the exact location the target will appear in or to an approximate region of 661 

varying size. Consistent with Feldmann-Wüstefeld & Awh (2019), an inverted encoding 662 

modeling analysis revealed that the spatial selectivity of anticipatory alpha-band activity 663 

decreased with greater uncertainty about the upcoming target’s location.  664 

Critically, the present results add to these previous findings in several ways: First, we 665 

demonstrate that just like preparatory attention is finely tuned and spatially sharpened 666 

depending on the task demands (Feldmann-Wüstefeld & Awh, 2019; Voytek et al., 2017), the 667 

ongoing attentional processing following search array onset is dynamically modulated 668 

depending on the required spatial specificity of the task. Further, the present findings 669 

complement a growing body of evidence, supporting the assumption that modulations of 670 

alpha oscillations represent a ubiquitous top-down controlled mechanism of spatial 671 

attention that plays a role across different attentional domains as well as across sensory 672 

modalities.  673 
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In principle, the notion that attention can improve the information content of a neural 674 

code is not novel. In fact, it is well-established that attending to a spatial position or a 675 

relevant feature increases single-neuron firing rates in primary and extrastriate visual areas 676 

and can result in changes in the size and position of spatial receptive fields (reviewed by 677 

(Sprague, Saproo, Serences, Jolla, & Jolla, 2015). In the auditory domain, physiological 678 

recordings in cats (Lee & Middlebrooks, 2011) revealed similar sharpening of spatial tuning 679 

in auditory cortex (i.e., A1) when the animal engaged in a spatial task compared to an off-680 

task “Idle” condition and a non-spatial periodicity detection task (for similar findings in 681 

human A1 see van der Heijden, Rauschecker, Formisano, Valente, & de Gelder, 2018). 682 

Hence, along with previous studies in the visual modality (Feldmann-Wüstefeld & Awh, 683 

2019; Voytek et al., 2017), the present results extend these findings, showing that such 684 

“sharpening” of neural activity occurs not only in tuning functions of single neurons, but is 685 

also evident in the adaption of population-level activity patterns. 686 

In addition to the multivariate decoding analysis, we also analyzed alpha lateralization 687 

following sound array onset as a ‘classical’ univariate measure of attentional orienting (e.g., 688 

Ikkai, Dandekar, & Curtis, 2016). In the present study, alpha lateralization magnitude did 689 

neither vary with perceptual load or spatial demand. The former observation replicates 690 

results of a previous study (Klatt et al., 2018b), finding no evidence for differences in alpha 691 

lateralization magnitude between a low-load (i.e., two-sound array) and a high-load (i.e., 692 

four-sound array) auditory search condition. In contrast, Bacigalupo and Luck (2019) 693 

reported that target-elicited alpha lateralization in a visual search paradigm tended to 694 

increase with greater task difficulty. Thus, the authors speculate that alpha lateralization 695 

might reflect effort rather than target selection. The present findings do not seem to bolster 696 

this claim: Both the behavioral data as well as a supplementary analysis of non-lateralized 697 

posterior alpha power (cf. supplementary material, S1) indicate that task difficulty and 698 

required cognitive resources increased with greater spatial demand. Yet, alpha lateralization 699 

magnitude was unaffected by the experimental manipulation. Nonetheless, the present 700 

findings do substantiate the notion that post-stimulus (or target-elicited) alpha lateralization 701 

presents an active signature of target processing in both visual (Bacigalupo & Luck, 2019) as 702 

well as auditory search (Klatt et al., 2018b). Bacigalupo and Luck (2019) further disscociate 703 

alpha lateralization from a well known ERP-signature of target individuation (i.e., the N2pc), 704 

suggesting that alpha lateralization reflects a long-lasting and ongoing attentional processing 705 
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of the target. Although we do not investigate ERP correlates in the present study, a closer 706 

look at the time-course of alpha lateralization supports this assumption: on average, alpha 707 

lateralization persist beyond and in fact peaks around the time participants make their 708 

response. Different temporal characteristics of N2ac (an auditory analogue of the visual 709 

N2pc commponent Gamble & Luck, 2011) and alpha lateralization have recently also been 710 

observed in response to shifts of auditory attention between relevant talkers in a simulated 711 

cocktailparty scenario (Getzmann, Klatt, Schneider, Begau, & Wascher, 2020), corroborating 712 

the notion that the EEG measures reflect different attentional processes (see also Klatt et al., 713 

2018b). 714 

Contrary to alpha lateralization magnitude, alpha lateralization onset latency was 715 

tightly linked to task difficulty and moreover, to behavioral performance. Specifically, alpha 716 

laterization emerged up to 203 ms earlier (20%-FAL) in the less demanding low perceptual 717 

load condition relative to the high perceptual load condition and 123 ms earlier (50%-FAL) in 718 

the low spatial demand condition relative to the high spatial demand condition. 719 

Furthermore, a repeated-measures correlation analysis showed that across all conditions, 720 

participants with earlier alpha lateralization onset latency showed shorter response times. 721 

This association was of moderate size (rrm = .37), irrespective of whether the 20%-FAL or 722 

50%-FAL was considered. This illustrates that slower sound localization coincides with slower 723 

post-stimulus attentional processing, which is reflected in delayed alpha lateralization onset 724 

latencies. Overall, this is in line with a previous visual search study (Foster et al., 2017), 725 

showing that the onset of alpha-based CTFs varied with reaction times as well as search 726 

difficulty. That the latency differences reported by Foster et al. (2017) were much larger (i.e., 727 

differences of up to 440 ms) could be attributed to the fact that their search conditions 728 

differed more strongly (e.g., distractors were all identical vs. heterogenous). In sum, the 729 

present findings corroborate the claim that attentional modulations of alpha power not only 730 

track the location of covert spatial attention, but also the time-course (i.e., the latency) of 731 

post-stimulus attentional processing.  732 

Finally, the clear-cut difference between univariate and multivariate measures of 733 

alpha power highlights the potential of multivariate decoding for the study of neurocognitive 734 

mechanisms. Similarly, when performing a univariate analysis of alpha power, Voytek et al. 735 

(2017) did not capture the fine-grained differences in the allocation of attention (depending 736 

on the spatial certainty of a cue) that were evident in the multivariate topography of alpha 737 



27 

 

power. Taken together, this illustrates the increased sensitivity of multivariate decoding 738 

techniques to reveal complex dynamics that are present in the combined signal across the 739 

scalp (Hebart & Baker, 2017). 740 

 741 

5. Conclusion 742 

In conclusion, our results show that the spatial specificity of post-stimulus alpha-band 743 

oscillations can be finely adapted depending on the spatial demands of the task. Notably, 744 

this task-dependent adaptation was only captured by the multivariate distribution of the 745 

alpha-band signal, whereas the magnitude of parieto-occipital alpha lateralization was 746 

insensitive to both variations in perceptual load and spatial demand. Yet, we observed a 747 

clear-cut association between alpha lateralization onset latency and response times in the 748 

present sound localization task. Thus, it appears that the time-resolved modulation of post-749 

stimulus alpha lateralization clearly captures differences in the efficiency of post-attentional 750 

processing, which in turn affects behavioral outcomes. These findings improve our 751 

understanding of the functional role of alpha oscillations for the ongoing attentional 752 

processing of complex auditory scenes and provide new insights into the attentional 753 

mechanisms underlying top-down adaptions to changing task demands. 754 
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S1. Non-lateralized, posterior alpha power desynchronization as a measure of cognitive  

task demands  

 

Desynchronization of alpha-band activity, resulting in low levels of alpha power, has been 1 

linked with states of high excitability and thus, thought to reflect functional engagement and 2 

information processing. Accordingly, increased working memory load (Fukuda, Mance, & 3 

Vogel, 2015; Krause et al., 2000) or greater semantic elaboration in an encoding task 4 

(Hanslmayr, Spitzer, & Bäuml, 2009) have been shown to coincide with greater event-related 5 

desynchronization (ERD). In the present study, posterior alpha ERD served as a measure of 6 

cognitive task demands. Mean alpha ERD amplitude per condition and subject was measured 7 

in-between 2160 and 2260 ms relative to target cue onset (i.e., 560 – 660 ms relative to 8 

sound array onset) at electrode Pz. Figure S1 depicts the condition-specific average 9 

waveforms of posterior alpha power. The time window that served as the basis for the 10 

statistical analysis was determined using a collapsed localizer approach (Luck & Gaspelin, 11 

2017). That is, we assessed the negative peak in the grand average waveform across 12 

conditions in a broad time-window from 1600 ms to 3000 ms (relative to target cue onset; 13 

i.e., the same time window used to measure the area under the curve for fractional area 14 

latency measurement). A 100 ms time window (i.e., +/- 50 ms) around the resulting peak 15 

value of 2210 ms constituted the measurement time window. Mean alpha power values 16 

were then submitted to a repeated-measures ANOVA, including the within-subject factors 17 

spatial demand (high vs. load) and perceptual load (high vs. low). The analysis revealed a 18 

significant main effect of spatial demand, F(1,16) = 7.87, p = .013, ηp² = 0.34, reflecting 19 

greater alpha ERD (i.e., more negative power) in the high spatial demand condition (M = -20 

3.78 dB, SD = 2.43) compared to the low spatial demand condition (M = -3.06 dB, SD = 2.10). 21 

While the main effect perceptual load was not significant, F(1,16) = 0.44, p = .52, ηp² = .03, 22 

there was a significant interaction between spatial demand and perceptual load, F(1,16) = 23 



10.01, p = .006, ηp² = 0.38. Follow-up paired sample t-tests revealed that the difference 24 

between low and high perceptual load trials fell short of significance in both the low spatial 25 

demand condition, t(16) = 1.78, p = .094, padj =  .233, g = 0.20, and the high spatial demand 26 

condition, t(16) = -1.49, p = .155, padj = .233, g = -0.08. Note that fdr-corrected (Benjamini & 27 

Yekutieli, 2001) p-values are denoted as padj, whereas g refers to Hedges’ g (Hentschke & 28 

Stüttgen, 2011). Altogether, the results complement the behavioral data analysis in the main 29 

manuscript, confirming that in particular the high spatial demand condition required a 30 

higher amount of cognitive resources compared to the less demanding low spatial demand 31 

condition. 32 

 

 

Figure S1. Event-related desynchronization (ERD) of alpha power at Pz. The line plot illustrates the condition-

specific averages depending on spatial demand and perceptual load. lsd-low = low spatial demand / low 

perceptual load, lsd-high = low spatial demand / high perceptual load, hsd-low = high spatial demand / low 

perceptual load, hsd-high = high spatial demand / high perceptual load. The grey rectangle indicates the 

approximate time window used for statistical analysis (i.e., 2160 and 2260 ms relative to target cue onset). 

Accordingly, the scalp topographies are based on the average alpha power in the respective analysis time window. 


