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a b s t r a c t

The topographical distribution of oscillatory power in the alpha band is known to vary

depending on the current focus of spatial attention. Here, we investigated to what extend

univariate and multivariate measures of post-stimulus alpha power are sensitive to the

required spatial specificity of a task. To this end, we varied the perceptual load and the

spatial demand in an auditory search paradigm. A centrally presented sound at the

beginning of each trial indicated the to-be-localized target sound. This spatially unspecific

pre-cue was followed by a sound array, containing either two (low perceptual load) or four

(high perceptual load) simultaneously presented lateralized sound stimuli. In separate task

blocks, participants were instructed either to report whether the target was located on the

left or the right side of the sound array (low spatial demand) or to indicate the exact target

location (high spatial demand). Univariate alpha lateralization magnitude was neither

affected by perceptual load nor by spatial demand. However, an analysis of onset latencies

revealed that alpha lateralization emerged earlier in low (vs high) perceptual load trials as

well as in low (vs high) spatial demand trials. Finally, we trained a classifier to decode the

specific target location based on the multivariate alpha power scalp topography. A com-

parison of decoding accuracy in the low and high spatial demand conditions suggests that

the amount of spatial information present in the scalp distribution of alpha-band power

increases as the task demands a higher degree of spatial specificity. Altogether, the results

offer new insights into how the dynamic adaption of alpha-band oscillations in response to

changing task demands is associated with post-stimulus attentional processing.
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1. Introduction

In everyday environments, containing multiple competing

sensory inputs, focusing spatial attention on relevant infor-

mation while ignoring or suppressing irrelevant information

is crucial to engage in goal-directed behavior. Consistently,

covert shifts of spatial attention have been shown to improve

various aspects of behavioral performance, including visual

spatial acuity (reviewed by Anton-Erxleben & Carrasco, 2013),

contrast sensitivity (Carrasco, Penpeci-Talgar, & Eckstein,

2000), or the rate of information accumulation (Carrasco &

McElree, 2001). On the electrophysiological level, asymmetric

modulations of parieto-occipital alpha-band power present a

robust signature of spatial attentional orienting. Typically,

alpha-band power decreases contralateral to the attended

location and/or increases over ipsilateral scalp sites. This

phenomenon of alpha power lateralization has been found in

response to anticipatory shifts of attention (Foxe, Simpson, &

Ahlfors, 1998; Worden, Foxe, Wang, & Simpson, 2000), when

retro-actively attending to working memory representations

(Poch, Capilla, Hinojosa, & Campo, 2017; Schneider, Mertes, &

Wascher, 2016), as well as during post-stimulus attentional

processing (e.g., in visual or auditory search paradigms;

Bacigalupo & Luck, 2019; Klatt, Getzmann, Wascher, &

Schneider, 2018b).

Accumulating evidence suggests that scalp-level alpha-

band activity not only reflects the attended hemifield but is

tuned specifically to the attended visual field location

(Bahramisharif, Heskes, Jensen, & van Gerven, 2011; Rihs,

Michel, & Thut, 2007). Moreover, this spatial selectivity is also

reflected in the retinotopic organization of alpha sources

(Popov, Gips, Kastner, & Jensen, 2019). First evidence for com-

parable ‘spatial tuning’ of alpha-band oscillations in the audi-

tory domain comes froma recent study byDeng and colleagues

(Deng, Choi, & Shinn-Cunningham, 2020) who found that the

topographic distribution of posterior alpha-band lateralization

changes monotonically as the focus of auditory spatial atten-

tion shifts in space (see alsoBanerjee, Snyder,Molholm,& Foxe,

2011 for a comparison across sensory domains).

Notably, recent evidence suggests that the degree of spatial

specificity reflected in the scalp distribution of alpha-band

power also depends on the current task demands

(Feldmann-Wüstefeld & Awh, 2020; Voytek et al., 2017). Spe-

cifically, compelling evidence comes from multivariate

inverted encoding models (IEM), which can be used to quan-

tify topographic patterns of alpha activity. Briefly, IEMs as-

sume that the scalp distribution of (alpha-band) oscillatory

power reflects the weighted sum of several spatially tuned

neural populations (or spatial channels). By estimating the

relative contribution of these channels (i.e., the channel

weights), the model allows to eventually predict the response

of the spatial channels from the distribution of alpha power

across scalp electrodes. This results in a set of so-called

“channel-tuning functions” that reflect the spatial selectivity

of the underlying neuronal populations that contribute to the

recorded scalp EEG (Foster, Sutterer, Serences, Vogel, & Awh,

2017). By means of IEMs, two studies of anticipatory visual

attention demonstrated that the spatial selectivity of alpha

activity increased when participants voluntarily focused on a
narrow rather than a broad region of space (Feldmann-

Wüstefeld & Awh, 2020) and scaled to the degree of certainty

of a central cue that indicated the location of an upcoming

target (Voytek et al., 2017).

Consistently, inanauditory spatial attention study, focusing

on post-stimulus attentional processing, we found that task-

demands shape the reliance on alpha-band mediated post-

stimulus processing. That is, auditory post-stimulus alpha

lateralization was only present in a spatially specific sound

localization task, whereas it was absent in a simple sound

detection paradigm (Klatt et al., 2018b, see also Deng, Reinhart,

Choi, & Shinn-Cunningham, 2019). In the present study, we set

out to further investigate to what extent attentional modula-

tions of post-stimulus alpha power capture the spatial de-

mandsofa sound localization taskonamorefine-grainedscale.

To this end, we varied both the perceptual load and the spatial

demand of the task. That is, participants were asked to localize

a target soundamonga setof either two (lowperceptual load) or

four (high perceptual load) concurrently presented sounds in a

lateralized sound array. In separate task blocks, they either

indicated (a) whether the target was present on the left or the

right side (i.e., two response options, low spatial demand) or (b)

reported the exact target location (i.e., four response options,

high spatial demand). On thebehavioral level,we expected that

high perceptual load (compared to low load) and high spatial

demand (compared to low spatial demand) would present the

more challenging listening situation, resulting in slower

response times and lower sound localization accuracy. Beyond

that, attempting to replicate previous results, we hypothesized

that post-stimulus modulations of alpha-band power should

index theattended target location,while themagnitude thereof

should not be affected by perceptual load (Klatt et al., 2018b).

This should be evident in a hemispheric lateralization of alpha-

band power over parieto-occipital electrode sites in both low

and high perceptual load trials.

Further, the critical aim of this studywas to assesswhether

the required degree of behavioral spatial specificity (low

vs high spatial demand) affects the spatial specificity of the

alpha power signal. If this is the case, this should be either

evident in a modulation of alpha lateralization magnitude

and/or captured by the scalp distribution of alpha-band

power. Hence, we applied both univariate as well as multi-

variate analysis techniques to evaluate alpha-band power

modulations depending on the spatial (and perceptual) de-

mands of the task. Finally, we assessed alpha lateralization

onset latencies to explore whether the time course of alpha-

band activity is likewise modulated by the required degree

of spatial specificity or perceptual load. Specifically, if slower

sound localization performance in high spatial demand or

high perceptual load conditions coincides with slower post-

stimulus attentional processing, this should be reflected in

delayed onset latencies of alpha lateralization. Such a time-

resolved modulation of attentional alpha-band activity is, for

instance, suggested by Foster and colleagues (Foster et al.,

2017), who showed that the onset latency of location-

selective alpha-band channel tuning functions (recon-

structed from the topographic distribution of alpha-band

oscillatory power) occurred later in time for trials with slow

compared to fast responses as well as for a hard compared to

an easier search condition.

https://doi.org/10.1016/j.cortex.2022.03.022
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2. Methods

2.1. Ethics statement

The study was approved by the Ethical Committee of the

Leibniz Research Centre for Working Environment and

Human Factors and conducted in accordance with the

Declaration of Helsinki. All participants provided written

informed consent prior to participation. The study procedure

and analyses were not pre-registered prior to conducting the

research. In the following sections, we report how we deter-

mined our sample size, all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations, and all

measures in the study.

2.2. Participants

19 participants were recruited to take part in the study.

Hearing acuity was assessed using a pure-tone audiometry

(Oscilla USB 330; Inmedico, Lystrup, Denmark), presenting

eleven pure-tone frequencies in-between 125 Hz and 8000 Hz.

One participant had to be excluded due to a unilateral, mild to

moderate hearing impairment in the right ear (hearing

thresholds of up to 35e50 dB hearing level). All other partici-

pants showed no signs of hearing impairment (hearing

thresholds � 25 dB). Another participant did not correctly

follow the task instructions and was also excluded. Thus, the

final sample included 17 subjects (mean age 23.29 years, age

range 19e30, 9 female), all of which were right-handed as

indicated by the Edinburgh Handedness Inventory (Oldfield,

1971). All participants had normal or corrected-to-normal

vision, reported no history of or current neurological or psy-

chiatric disorders and received course credit or financial

compensation (10V/hour) for their participation. The above-

mentioned inclusion and exclusion criteria were established

prior to data collection. The sample size we aimed at was

chosen to be comparable to previous publications from the lab

that investigated similar electrophysiological measures (e.g.,

Klatt et al., 2018b; Klatt, Getzmann, Wascher, & Schneider,

2018a). A sensitivity analysis, conducted using MorePower

6.0 (Campbell& Thompson, 2012), revealed that with a sample

size of N ¼ 17, an alpha level of .05 and power of .8, the

smallest effect size we can detect is hp
2 ¼ .36.

2.3. Experimental setup and stimuli

The experiment was conducted in a dimly illuminated,

anechoic, and sound-attenuated room (5.0 � 3.3 � 2.4 m3).

Pyramid-shaped foam panels on ceiling and walls and a

woolen carpet on the floor ensure a background noise level

below 20 dB(A). Participants were seated in a comfortable

chair with their head position held constant by a chin rest. A

semicircular array of nine loudspeakers (SC5.9; Visaton, Haan,

Germany) was mounted in front of the subject at a distance of

~1.5 m from the subject's head and at a height of ~1.3 m

(approximately at ear level). Only five loudspeakers, located at

azimuthal positions of�90�,�30�, 0�, 30�, and 90� respectively,
were used for the present experimental setup. A red, light-
emitting diode (diameter 3 mm) was attached right below

the central loudspeaker. The diode remained turned off dur-

ing the experiment but served as a central fixation target.

As sound stimuli, eight familiar animal vocalizations

(‘birds chirping’, ‘dog barking’, ‘frog croaking’, ‘sheep baaing’,

‘cat meowing’, ‘duck quacking’, ‘cow mooing’, ‘rooster crow-

ing’) were chosen from an online sound archive (Marcell,

Borella, Greene, Kerr, & Rogers, 2000). The original sounds

were cut to a constant duration of 600 msec (10 msec on/off

ramp), while leaving the spectro-temporal characteristics

unchanged. The overall sound pressure level of the sound

arrays, containing either two or four concurrently present

sounds, was about 63 dB(A) and 66 dB(A), respectively. The

target sounds, presented in isolation from a central position,

had a sound pressure level of 60 dB(A).

2.4. Procedure, task, and experimental design

The experiment consisted of an auditory search paradigm

implementing a sound localization task. The sequence of

events in a given trial is depicted in Fig. 1. Each trial began

with a silent period of 500 msec. Then a sound stimulus (i.e., a

target cue) was presented from a central position (0� azimuth

angle) for 600 msec, indicating which animal vocalization will

serve as a relevant target sound in a given trial. The latter was

followed by a 1000 msec silent inter-stimulus-interval and a

sound array (600 msec). The sound array contained either two

(i.e., low perceptual load, 50%) or four (i.e., high perceptual load,

50%) simultaneously present lateralized sound stimuli. Re-

sponses were permitted immediately after sound array onset

and until the end of a 1600 msec response interval. The latter

was followed by another 300 msec silent interval. In total,

each trial lasted for 4600 msec.

In low perceptual load trials, the two sounds could occur at

either of the four lateralized loudspeaker positions (�90�,
�30�, 30�, 90� azimuth), with the restriction that the two

sounds (i.e., the target and a non-target sound) were always

present in different hemi-fields. Accordingly, in high percep-

tual load trials all four lateralized active loudspeakers (�90�,
�30�, 30�, 90� azimuth) were used. Depending on the task

condition, participants received slightly different task in-

structions: In the low spatial demand (lsd) condition, partici-

pants were instructed to indicate whether the target sound

was present on the left versus right side (i.e., two response

options: left v right) or to withhold their response if the target

sound was not present (i.e., target-absent trials). In the high

spatial demand (hsd) condition, participants were asked to

indicate the exact target location (i.e., four response options:

inner-left, outer-left, inner-right, outer-right) or to withhold

their response if the target sound was not present. Target-

absent trials were included to ensure that selectively

listening to the input from only one side of the stimulus array

(i.e., left or right) presented no viable strategy in low spatial

demand task blocks. Specifically, if the sound array always

contained a target sound in low spatial demand blocks, sub-

jects could be inclined to simply infer that the target was

located on the left side solely because they didn't perceive it on

the right side (or vice versa).

Participants indicated their response by pressing one out of

four buttons, arranged in a semi-circular array on a response

https://doi.org/10.1016/j.cortex.2022.03.022
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Fig. 1 e Schematic illustration of the experimental design. A centrally presented target cue indicated the relevant target in a

given trial. Then, a sound array appeared, containing either two or four simultaneously present sounds from lateralized

positions. In different task blocks, participants were asked to either indicate whether the target was presented on the left or

the right side (low spatial demand) or to report the exact target location (high spatial demand). Responses were permitted

immediately following sound array onset (i.e., there was no need to withhold the response until the onset of the response

interval). In both task blocks, it was also possible that the sound array did not contain the target (i.e., target-absent trial). In

this case, participants withheld their response. ISI ¼ inter-stimulus-interval.
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pad. In the high-spatial demand condition, each button cor-

responded to one of the loudspeaker positions, such that

participants had to press the left-most button when the target

was presented at the left-most loudspeaker and so on. In low

spatial demand trials, participants only used the two inner

response buttons (i.e., the left button for left-target responses,

the right button for right-target responses). Participants were

instructed to always respond as accurately and as fast as

possible, using the index finger of their right hand. To mini-

mize horizontal eye movements during the EEG-recording,

participants were instructed to fixate a centrally positioned

light-emitting diode.

Each of the spatial demand conditions (i.e., low vs high

spatial demand) consisted of 672 trials, containing both low

(50%) and high (50%) perceptual load trials in randomized

order. Short, self-paced breaks after every 224 trials and in-

between conditions were conducted to prevent fatigue. The

order of conditions was counterbalanced across participants,

such that n ¼ 8 subjects first completed the low-spatial de-

mand condition and n ¼ 9 subjects first completed the high-

spatial demand condition. Prior to the beginning of each

condition participants completed 40 practice trials to famil-

iarize with the task. All participants were presented with the

same semi-randomized selection of trials. Critically, in both

spatial demand conditions the same selection of 672 trials was

presented, but in a different, randomized order. This assured

that all differences between conditions could be ascribed to

the task manipulations rather than differences in the
stimulus materials. Each of the eight animal vocalizations

served as the target equally often (i.e., 84 times per condition).

In addition, the target sound appeared equally often at each of

the four possible sound speaker locations (i.e., 56 times per

location and perceptual load per condition). This also ensured

that the number of left (1/3) vs right (1/3) responses in low-

spatial demand trials as well as the number of outer-left (1/

5), inner-left (1/5), inner-right (1/5), and outer-right (1/5) re-

sponses in high-spatial demand trials was counterbalanced

across subjects. Target-absent trials constituted 1/3rd and 1/

5th of all trials in low and high spatial demand task blocks,

respectively. The timing of the stimuli was controlled by

custom-written software. Participants did not receive feed-

back during the experiment.

Taken together, the present study comprised a 2 � 2

repeated-measures design, including the within-subject fac-

tors spatial demand (low vs high spatial demand) and perceptual

load (low vs high perceptual load). Note that there are different

ways of defining perceptual load (for a review see Murphy,

Spence, & Dalton, 2017). Here, we refer to perceptual load as

the number of items in the search display.

2.5. EEG data acquisition

The continuous EEG data were recorded from 58 Ag/AgCl

passive scalp electrodes (ECI Electrocap, GVB-geliMED GmbH,

Bad Segeberg, Germany) as well as from left and right mas-

toids. Electrode positions corresponded to the international

https://doi.org/10.1016/j.cortex.2022.03.022
https://doi.org/10.1016/j.cortex.2022.03.022
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10e10 system. The electrooculogram (EOG) was simulta-

neously recorded from four additional electrodes, placed

lateral to the outer canthus of each eye as well as below and

above the right eye. The ground electrode was placed on the

center of the forehead, right above the nasion. The average of

all electrodes served as the online-reference. The data were

recorded using a QuickAmp-72 amplifier (Brain products,

Gilching, Germany) and digitized at a sampling rate of 1 kHz.

During the preparation of the EEG cap, all electrode imped-

ances were kept below 10 kU.

2.6. Data analysis

If not stated otherwise, all data analyses were performed

using custom MATLAB (R2021b) code and built-in functions

from the Statistics and Machine Learning Toolbox.The signifi-

cance of all tests was evaluated at an alpha level of .05.

Because the F-distribution is always asymmetric, reported p-

values associated with repeated-measures analysis of vari-

ance (ANOVA) are directional (Winter, 2011). Partial Eta

Squared (hp
2) and Hedges' g (denotes as g, Hentschke &

Stüttgen, 2011) are provided as standardized measures of ef-

fect size for ANOVAs and follow-up paired sample t-tests.

Standard deviation and mean are abbreviated as SD and M,

respectively.

2.6.1. Behavioral
The behavioral parameters that were analyzed were response

times and accuracy (i.e., percentage of correct responses).

Please note that target-absent trials did not require a button

press because subjects were instructed to withhold their

response. Hence, we cannot safely distinguish whether a non-

response in a target-absent trial was due to the correct

perception that no target was presented or due to occasional

attentional lapses, causing the subject to “miss” a trial.

Consequently, to compute the percentage of correct re-

sponses, we only considered target-present trial, which al-

ways required a button press. To compute mean response

times, only correct target-present trials were considered. Pre-

mature responses (<200 msec post-sound array onset) were

excluded from further analyses. Mean RTs and accuracy

measures per subject and condition were submitted to a

repeated-measures ANOVA. Spatial demand and perceptual

load served as within-subject factors.

2.6.2. EEG
All EEG data processing was performed using the open-source

toolbox EEGLAB (v14.1.2; Delorme & Makeig, 2004) in combi-

nation with custom MATLAB (R2021b) code.

2.6.2.1. PREPROCESSING. Initially, continuous segments of �1 to

þ1 s surrounding boundary events as well as the DC offset

were removed from the data. Then, the continuous EEG data

were band-pass filtered, using a non-causal, high-pass and a

low-pass Hamming windowed sinc finite impulse response

(FIR) filter (pop_eegfiltnew function). The lower edge of the

frequency pass band was set to .1 Hz (filter order: 33000,

transition band-width: .1 Hz, �6 dB cutoff: .05 Hz) and the

higher edge of the frequency pass band to 30 Hz (filter order:

440, transition band-width: 7.5 Hz, �6 dB cut-off: 33.75 Hz).
Early-stage preprocessing was then performed using the PREP

pipeline (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015),

which essentially consists of three steps: it performs an initial

clean-up, determines and removes a robust reference signal,

and interpolates bad channels with a low signal to noise ratio.

For an extensive documentation of the single steps, please see

Bigdely-Shamlo et al. (2015). Only scalp EEG channels were

used for evaluation of noisy channels and for computation of

the robust reference, while all channels (including mastoids

and EOG channels) were re-referenced. On average, 3.8

channels (SD ¼ 2.3) were identified as bad and interpolated

prior to subtracting the computed “true” reference. This in-

cludes a total of three channels (across two subjects) that were

manually interpolated prior to running the PREP algorithm,

because the latter did not identify the respective channels as

flat channels. For channel interpolation, the PREP pipeline

applies spherical spline interpolation as implemented in the

eeg_interp() function (Perrin, Pernier, Bertrand, & Echallier,

1989), which is based on the electrode location coordinates

of the international 10e10 system. The same algorithm was

used tomanually interpolate the three channels that were not

identified as flat channels by the PREP algorithm. A total of

three channels (in two subjects) belonging to the posterior

electrode cluster of interest that was used for statistical

analysis (see Section 2.6.2.3) were marked as bad and thus,

interpolated during this procedure.

For artifact rejection, an independent component analysis

(ICA) was run on the dimensionality reduced data (using a

basic implementation of principle component analysis). To

speed up and improve ICA decomposition, the continuous

data were down-sampled to 200 Hz and high-pass filtered at

1 Hz (Winkler, Debener, Muller, & Tangermann, 2015), using a

non-causal Hamming windowed sinc FIR filter (filter order:

3300, transition band-width: 1 Hz, �6 dB cutoff: .5 Hz) prior to

running the ICA algorithm. Then, data epochs were extracted,

ranging from �1000 to 5000 msec relative to target cue onset.

In addition, major artefacts and extremely large potential

fluctuations were removed before running ICA, using the

automatic trial-rejection procedure implemented in EEGLAB

(i.e., function pop_autorej). The latter rejects data epochs,

containing data values exceeding a given standard deviation

threshold by means of an iterative procedure (probability

threshold: 5 SD, maximum proportion of total trials rejection

per iteration: 5%, threshold limit: 500 mV). Because interpo-

lating channels prior to ICA introduces rank-deficiency, the

number of to-be extracted independent components (IC) was

manually reduced by the number of interpolated channels þ1

(to account for the dependency introduced by the average

reference). To identify artefactual ICs, the EEGLAB plug-in

ICLabel (v1.1, Pion-Tonachini, Kreutz-Delgado, & Makeig,

2019), was applied. ICLabel assigns a label vector to each IC,

indicating the probability that an IC belongs to any of seven

possible categories: brain, muscle, eye, heart, line noise,

channel noise, or other. All ICs that received a probability

estimate below 50% for the brain category were marked as

“artefactual” (Arnau et al., 2020; Reiser, Wascher, Rinkenauer,

& Arnau, 2020). Further, one restriction applied: ICs with the

maximum probability estimate for the category brain were

not rejected even if the probability was below 50% to avoid

that meaningful brain activity was removed from the signal.

https://doi.org/10.1016/j.cortex.2022.03.022
https://doi.org/10.1016/j.cortex.2022.03.022


1 Please note that the precise time window spans 415 msec.
That is because the boundaries of the analysis time window refer
to the actual sampling points that were present in the data: We
first identified the peak in the grand average contralateral minus
ipsilateral difference waveform. Then, the lower boundary of the
analysis time window was determined by subtracting 200 msec
from the peak latency and finding the sampling point that is
closest to this value. Analogously, the upper boundary of the
analysis time window was determined by adding 200 msec to the
peak latency and finding the sampling point that is closest to this
value.
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The obtained ICA decomposition and the ICLabel results were

copied to the original, continuous dataset (band-pass filtered

and re-referenced) with a 1 kHz sampling rate. The latter was

segmented into epochs ranging from �1000 to 5000 msec

relative to target cue onset and baseline-corrected, using the

pre-stimulus period of �200 to 0. Then, ICs that were previ-

ously identified as artefactual (On average, 32.82 ICs;

SD ¼ 4.41) were removed from the signal. Finally, to remove

remaining artefacts that were not accounted for by the ICA-

based artefact rejection procedure, trials with large fluctua-

tions (�150/þ150 mV) were excluded, using the automated

EEGLAB algorithm pop_eegthresh(). Moreover, trials with pre-

mature responses (i.e., response time <200 msec) were

excluded (on average 5 trials, SD ¼ 9). Not considering target-

absent trials (i.e., irrelevant for the present analyses), on

average, 216 (lsd-low, SD¼ 11), 216 (lsd-high, SD¼ 9), 213 (hsd-

low, SD ¼ 10), and 213 (hsd-high, SD ¼ 11) target-present-trials

passed the artefact correction per subject. Specifically, 211

(lsd-low, SD ¼ 14), 190 (lsd-high, SD ¼ 18), 205 (hsd-low,

SD ¼ 13), and 176 (hsd-high, SD ¼ 21) of those target-present

trials were correct trials, and thus entered the univariate

EEG analysis. This corresponds to, on average, 106 (lsd-low,

SD ¼ 7), 95 (lsd-high, SD ¼ 9), 103 (hsd-low, SD ¼ 7), and 88

(hsd-high, SD ¼ 10) trials per target hemifield.

2.6.2.2. TIME-FREQUENCY DECOMPOSITION. The time-frequency

decomposition of the processed EEG data was computed

using Morlet wavelet convolution as implemented in the

build-in EEGLAB STUDY functions (i.e., newtimef.m). Specif-

ically, the segmented EEG signal was convolved with a series

of complex Morlet wavelets. The frequencies of the wavelets

ranged from 4 Hz to 30 Hz, increasing logarithmically in 52

steps. A complex Morlet wavelet is defined as a complex sine

wave that is tapered by a Gaussian. The number of cycles, that

defines the width of the tapering Gaussian, increased linearly

as a function of frequency by a factor of 0.5. This procedure

accounts for the trade-off between temporal and frequency

precisions as a function of the frequency of the wavelet. The

number of cycles at the lowest frequencywas 3; the number of

cycles at the highest frequency was 11.25. The time period in-

between �400 and �100 msec relative to target cue onset

served as a spectral baseline.

2.6.2.3. ALPHA POWER LATERALIZATION. Spatial shifts of attention

following the onset of the sound array were quantified by

assessing lateralized modulations of posterior alpha-band

power (8e12 Hz). Specifically, the difference between contra-

lateral and ipsilateral alpha power at a cluster of posterior

electrodes, comprising PO7/8, P7/8, P3/4, and PO3/4, was

calculated separately for each condition and each subject. The

selection of electrodes was based on previous studies of post-

stimulus, posterior alpha lateralization (Klatt, Getzmann,

Begau, & Schneider, 2019; Schneider, G€oddertz, Haase,

Hickey, & Wascher, 2019), except that P5/P6 were not part of

the present electrode setup and thus, electrodes P3/4 were

included in the electrode cluster instead. Given that post-

stimulus alpha power asymmetries have been shown to

appear as a relatively long-lasting, sustained effect (Klatt

et al., 2018a), the mean contralateral-minus-ipsilateral dif-

ferences in power were extracted in a broad 400 msec-time
window, ranging from 546 to 961 msec following sound array

onset.1 The timewindowwas set around the peak in the grand

average contralateral minus ipsilateral difference waveform

across all conditions and subjects. The peak was defined as

the point in time at which the difference waveform (following

sound array onset, 1600 msece3000 msec) reached its most

negative amplitude value. The resulting analysis timewindow

is consistent with our earlier work (Klatt et al., 2018a). Notably,

although this approach to determine the analysis time win-

dow is data-driven, the comparisons between conditions

remain unbiased (Luck & Gaspelin, 2017). The mean power

values per subject and condition were then submitted to a

repeated-measures ANOVA, including the within-subject

factors spatial demand and perceptual load to assess their ef-

fect on alpha lateralization magnitude.

2.6.2.4. ALPHA LATERALIZATION ONSET LATENCIES. To quantify the

time course of alpha lateralization, we used a combination of

the fractional area technique (Kiesel, Miller, Jolicœur, &

Brisson, 2008; Luck, 2014) and a jackknife approach (Luck,

2014; Miller, Patterson, & Ulrich, 1998). That is, for each con-

dition, n subaverage contralateral minus ipsilateral difference

waveforms were created, using a subsample of n�1 wave-

forms (i.e., each participant was omitted once). In each of

these subaverage waveforms, the point in time at which the

negative area under the curve reached 20% and 50%, respec-

tively (i.e., Fractional Area Latency, denoted as FAL) was

measured, using the MATLAB function latency.m by Liesefeld

(2018). Negative area was measured relative to zero and in-

between a broad time window from 1600 to 3000 msec post-

cue-onset (i.e., 1600 msec corresponds to sound array onset).

Note that reported mean latency differences (denoted as D)

correspond to the differences in onset latency between con-

ditions, measured in the condition-grand averages. According

to Miller et al. (1998), the jackknife-based SED was calculated

as follows:

SED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N� 1
N

XN
i¼1

ðD�i � JÞ2
vuut :

D�i (for I ¼ 1, …, N, with N representing the sample size) de-

notes the latency difference for the subsample, including all

subjects except for subject i. J is the mean difference across all

subsamples (i.e., J ¼ P
D�i=N).

The 20%-FAL and 50%-FAL values were submitted to

separate repeated-measures ANOVAs, including the within-

subject factors spatial demand and perceptual load. Because

the use of subsample averagemeasures artificially reduces the

error variance, the error terms in the respective ANOVA will

https://doi.org/10.1016/j.cortex.2022.03.022
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2 Please note that the approach to compute alpha power for the
decoding analysis (i.e., Hilbert transform) differs from the
methods used for the univariate analyses of alpha power (i.e.,
Morlet wavelet convolution). For the univariate analyses, we
wanted to keep the approach consistent with and comparable to
our previous manuscripts (Begau, Klatt, Wascher, Schneider, &
Getzmann, 2021; Klatt et al., 2018a, 2019); for the decoding anal-
ysis, we adopted the analysis approach from Bae and Luck (2018)
and thus, applied a Filter Hilbert transformation. However, con-
ducting the univariate analyses of alpha power using a Hilbert
transform approach, essentially reproduces all results.
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be underestimated, while the F-values will be overestimated.

To account for this bias, the F-correction according to Kiesel

et al. (2008) was applied. Corrected F-values are denoted as

Fcorr. The corresponding p-value for the corrected F statistic

was computed using the online calculator by Soper (2020). In

accordance with Richardson (2011), partial eta squared was

computed based on the corrected F-values and the degrees of

freedom (cf. formula 8 in Richardson, 2011).

Please note that the main aim of the present analysis of

onset latency measures was to assess differences in time

course of alpha lateralization between the experimental

conditions. However, the estimated latency measures should

not be interpreted as reflecting the true onset time of the

underlying attentional process. This precaution applies for

two reasons: First, the temporal resolution of event-related

spectral perturbations is considerably lower compared to

standard event-related potential (ERP) analysis. Second, non-

causal filters, as applied here to the continuous raw EEG

data, have been shown to affect the onset latency of time-

series data considerably (VanRullen, 2011, but see also;

Rousselet, 2012). Critically, as the filter should affect all con-

ditions to the same extent, the differences between conditions

can still be reliably interpreted.

2.6.2.5. NON-LATERALIZED, POSTERIOR ALPHA POWER DESYNCHRONIZA-

TION. Event-related desynchronization (ERD) of alpha-band

activity resulting in low levels of alpha power has been

linked with states of high excitability and thus, is thought to

reflect functional engagement and information processing

(see e.g., Fukuda, Mance, & Vogel, 2015; Hanslmayr, Spitzer, &

B€auml, 2009; Krause et al., 2000). Hence, in the present study,

posterior alpha ERD served as a measure of cognitive task

demands. Mean alpha ERD amplitude per condition and sub-

ject was measured in-between 1698 msec and 2698 msec

relative to target cue onset (i.e., 98e1098 msec relative to

sound array onset) at electrode Pz. The time window that

served as the basis for the statistical analysis was determined

using a collapsed localizer approach (Luck & Gaspelin, 2017).

That is, we assessed the negative peak in the grand average

waveform across conditions in a broad time-window from

1600 msec to 3000 msec (relative to target cue onset, i.e., the

same time window used to measure the area under the curve

for fractional area latency measurement). In accordance with

previous studies which characterized post-stimulus alpha

ERD as a broad, sustained response (Fukuda et al., 2015;

Hanslmayr et al., 2009; Krause et al., 2000), a 1000 msec time

window (i.e., ±500 msec) around the resulting peak latency of

2198 msec (i.e., 598 msec following sound array onset)

constituted the measurement time window. Mean alpha

power values were then submitted to a repeated-measures

ANOVA, including the within-subject factors spatial demand

(high vs load) and perceptual load (high vs low).

2.6.2.6. DECODING ANALYSIS. We attempted to decode the exact

location (i.e., outer-left, inner-left, inner-right, outer-right) of

the target sound based on the scalp distribution of alpha-band

EEG power. The decoding procedure was applied separately

for the low versus the high spatial demand condition to inves-

tigate whether the ‘amount’ of spatial information reflected in

the scalp topography of alpha-band power is modulated by
the spatial demands of the task. The factor perceptual loadwas

not considered in the decoding analysis for two reasons: First,

the decoding analysis primarily aimed to follow up on similar

analyses that investigated anticipatory (i.e., pre-stimulus)

modulations of alpha power (Feldmann-Wüstefeld & Awh,

2020; Voytek et al., 2017) which provided evidence that the

scalp distribution of alpha-band power is modulated by the

spatial specificity of the task demands. In addition, perform-

ing separate decoding analyses for the different perceptual

load conditions would have resulted in a substantially

reduced number of trials available for each decoding routine.

Further, only correct trials were considered for the decoding

analysis. This ensures that differences in accuracy between

the two spatial demand conditions to not affect the results.

The applied classification routine was adapted from Bae

and Luck (2018). First, to isolate the alpha-band signal of in-

terest, the segmented EEG at all scalp electrodeswas bandpass

filtered at 8e12 Hz, using EEGLAB's eegfilt() function, which

applies two-way least-squares FIR filtering. Then, we sub-

mitted the bandpass filtered EEG data to a Hilbert transform to

obtain the magnitude of the complex analytic signal. The

latter was squared to compute the total power in the alpha

frequency band (i.e., 8e12 Hz) at each time point.2 Subse-

quently, to increase the efficiency of the analysis and decrease

computation time, the data was subsampled, keeping only

every 20th data point in-between �500 and 4500 msec relative

to target sound onset (i.e., corresponding to a sampling rate of

50 Hz). This results in a 4-dimensional data matrix for each

participant, including the dimensions of time (250 time

points), location (4 different categories), trial (varies depend-

ing on the subject, in-between 64 and 110 trials for each

location), and electrode site (the 57 scalp channels).

To classify the location of the target sound based on the

scalp topography of the alpha power signal over the 57 scalp

electrodes (mastoids and EOG electrodes were excluded), we

used a combination of a support vector machine (SVM) and

error-correcting output codes (ECOC; Dietterich & Balkiri,

1995). The ECOC model, implemented using the MATLAB

function fitcecoc(), combines the results from multiple binary

classifiers and thus, solves multiclass categorization prob-

lems. Classifications were performed within subjects and

using trial averages rather than single-trial data. The latter

increases the signal-to-noise ratio in the classifier input and

has been shown to result in higher (although more variable)

decoding accuracies (Adam, Vogel, & Awh, 2020).

Specifically, decodingwas performed separately for each of

the 250 time points in-between�500 and 4500msec relative to

target sound onset. At each time point, 50 iterations of the

classification analysis were performed; on each iteration, the

https://doi.org/10.1016/j.cortex.2022.03.022
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data were sorted into four ‘location bins’, containing only

trials with the same target location. In each location bin, the

trials were randomly divided into three equally sized sets of

trials. That is, to ensure that an equal number of trials was

assigned to each of the three sets for each location bin, the

minimum number of trials per subject for a given location bin

was determined (denoted as n), and n/3 trials were assigned to

each set. In case the total trial number for a given locationwas

not evenly divisible by three, excess trials were randomly

omitted. The trials for a given location bin were averaged,

resulting in a matrix of 3 (subsample averages) � 4 (location

bins) � 57 (electrodes) to be analyzed for each time point. Two

of the three subsample averages (for each target location)

served as the training set, while the remaining subsample

average (for each target location) was assigned to the testing

dataset. In the training phase, the data from the two (of the

total three) subsample averages was simultaneously submit-

ted to the ECOCmodel with known location labels to train four

SVMs (one for each location). Each SVM was trained to

perform a binary classification, that is, to discriminate one

specific location from all other locations. Subsequently, in the

test phase the unused data (i.e., the subsample averages that

were reserved for testing) was fed into the set of four trained

SVMs to classify which of the 4 locations served as the target

location in each of the subsample averages; hence, by comb-

ing the results from multiple binary classifiers, a multi-class

categorization problem is solved. Specifically, the MATLAB

predict() function was used to classify the input data by mini-

mizing the average binary loss across the four trained SVMs.

Essentially, the output of the predict() function provides a

location label for each of the four remaining subsample av-

erages in the testing dataset. By comparing the true location

labels to the predicted location labels, decoding accuracy was

computed. Decoding was considered correct if the classifier

correctly determined which one of the four possible locations

was the target location. Thus, chance level decoding accuracy

was at 25%. This training-and-testing process was applied

three times such that each subsample average served as the

testing dataset once. Finally, decoding accuracy was collapsed

across the four locations, the three cycles of cross-validation,

and the 50 iterations, resulting in a decoding percentage for

each time point. After obtaining a decoding percentage for all

time points of interest, a five-point moving average was

applied to smooth the averaged decoding accuracy values and

to minimize noise.

2.6.2.7. STATISTICAL ANALYSIS OF DECODING ACCURACY. Although

decoding was performed for all time points in-between �500

and 4500 msec relative to sound onset, the statistical analysis

focused on the time interval following sound array presenta-

tion until the end of the maximal response interval (i.e.,

1600e3800 msec relative to sound onset). We restricted the

statistical analysis to this time interval because the goal was

to test decoding accuracy during the post-stimulus interval

(i.e., when post-stimulus attentional processing takes place).

In addition, because participants did not have any knowledge

about where the target is going to appear prior to sound array

onset, there should be no location-specific information pre-

sent in-between target cue and sound array-onset. Briefly, the

statistical analysis of decoding accuracy comprised two
separate approaches: First, to confirm that the scalp topog-

raphy of post-stimulus alpha-band power contains informa-

tion about the target location, we compared decoding

accuracy to chance level (i.e., 25% e because we used 4 loca-

tions) at each time point. This was done separately for the two

spatial demand conditions. Second, we compared decoding

accuracy in the low and high spatial demand condition to

evaluate whether the amount of spatial information that is

reflected in the scalp topography of alpha-band power is

sensitive to the spatial demands of the task. At both stages, we

controlled for multiple comparisons (see below for details).

2.6.2.8. DECODING ACCURACY WITHIN CONDITIONS. We used a non-

parametric cluster-based permutation analysis to compare

decoding accuracy to chance level (i.e., 25%) at each time

point. Here, we adopted the corrected analysis code provided

by Bae and Luck (2019), accounting for the presence of auto-

correlated noise in the data. Using one-sided one sample t-

tests, the average decoding accuracy across subjects was

compared to chance level, separately for each time-point.

Because SVM decoding does not produce meaningful below-

chance decoding results, a one-sided t-test is justified. Then,

clusters of at least two adjacent time points with a significant

single-point t-test (i.e. p < .05) were identified. The t-values

within a given cluster were summed, constituting the so-

called cluster mass. To determine whether a given cluster

mass is greater than what can be expected under the null

hypothesis, we constructed a null distribution of cluster-level

t-mass values using permutation tests. Critically, to reduce

computation time, we randomly permuted the target labels at

the stage of testing the decoding output, rather than prior to

training the classifier. Specifically, from an array containing

all possible target labels (1, 2, 3, 4), we randomly sampled an

integer as the simulated response of the classifier for a given

target location. If the response matched the true target value,

the response was considered correct. This yields an estimate

of the decoding accuracy values that would by obtained by

chance if the decoder randomly guessed the target location.

Critically, to reflect the temporal autocorrelation of the

continuous EEG data, the same randomly sampled target po-

sition label was used for all time points in a given subaverage.

Overall, this sampling procedure was repeated 600 times (4

locations � 3 cross-validations � 50 iterations) and for each

time point of interest in-between 1600 msec and 3800 msec.

The scores for each time point were averaged to obtain the

mean simulated decoding accuracy, resulting in a time series

of decoding accuracy values. Analogous to the procedure that

was applied to the actual EEG data, the latter was smoothed

using a five-point running average filter. The procedure was

repeated 17 times, to obtain a simulated decoding accuracy

time series for each of our 17 participants. Then, using the

simulated decoding accuracy time series, the maximum

cluster mass was computed, using the procedure described

above. That is, if therewasmore than one cluster of significant

t-values, the mass of the largest cluster was selected.

Finally, this procedure (i.e., simulating decoding accuracy

that would be obtained by chance) was iterated 10,000 times to

produce a null distribution of cluster mass values. For each

cluster in the decoding results, the obtained cluster t mass

was compared to the distribution of cluster t mass values that

https://doi.org/10.1016/j.cortex.2022.03.022
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That is because the boundaries of the analysis time window refer
to the actual sampling points that were present in the data: We
first identified the peak in the grand average contralateral minus
ipsilateral difference waveform. Then, the lower boundary of the
analysis time window was determined by subtracting 200 msec
from the peak latency and finding the sampling point that is
closest to this value. Analogously, the upper boundary of the
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was constructed under the assumption that the null hypoth-

esis is true. If the observed cluster t mass value was larger

than the 95th quantile of the null distribution (i.e., a¼ .05, one-

tailed), the null hypothesis was rejected and decoding accu-

racy was considered above chance. Note that this procedure

was separately applied to both the low spatial demand con-

dition and the high spatial demand condition.

To find the p-value associated with a specific cluster, we

examined where within the null distribution does each

observed cluster t mass value fall. That is, the p-value was

based on the inverse percentile (computed using the

invprctile() function) of the observed cluster-level tmasswithin

the null distribution. If the observed cluster-level t-mass value

exceeded the maximum cluster-level t-mass of the simulated

null distribution, the respective p-value is reported as p < 10�4.

The latter corresponds to the resolution of the null distribu-

tion (i.e., 1/number of permutations).

2.6.2.9. DECODING ACCURACY IN LOW VERSUS HIGH SPATIAL DEMAND

BLOCKS. To investigate, whether or not the amount of spatial

information reflected by the scalp topography of alpha power

differs depending on the spatial demands of the task, decod-

ing accuracy in the two task conditionswas compared, using a

cluster-corrected sign-permutation test. To this end, the

cluster_test() and cluster_test_helper() functions provided by

Wolff, Jochim, Akyürek, and Stokes (2017) were applied. The

sign-permutation test is a non-parametric test that makes no

assumption of the distribution of the data. As input data, the

same time window that was also used for the statistical

analysis of decoding accuracy within conditions was selected

(i.e., 1600e3800 msec). Specifically, the cluster_test_helper()

function generates a null distribution by randomly flipping the

sign of the input data of each participant with a probability of

50%. This procedure was repeated 10,000 times. The resulting

distribution served as input to the cluster_test() function,

identifying those clusters in the actual data that are greater

than would we expected under the null hypothesis. The

cluster-forming threshold as well as the cluster significance

threshold were set to p < .05. Because we had a clear hy-

pothesis regarding the direction of the effect (that is, decoding

accuracy in the high spatial demand condition should be

higher compared to the low spatial demand condition), the

cluster-corrected sign-permutation test was one-sided.

In addition, to assess the overall difference in decoding

ability within the post-stimulus period, the decoding accuracy

was averaged across time in the approximate time window

that resulted in significant within-condition decoding results

across the two large clusters in both conditions (i.e.,

1920e3380 msec) and submitted to a one-sided permutation

test. To this end, the GroupPermTest() function provided by

Wolff et al. (2017) was applied (using nSims ¼ 10,000

permutations).

2.6.2.10.
RESPONSE-LOCKED ANALYSES. Several observations in the univari-

ate and the multivariate analysis of alpha power prompted us

to add the following post-hoc analyses3:
3 We thank two anonymous reviewers for suggesting the
response-locked analyses.
First, we time-locked the processed EEG data to the

response, creating new epochs ranging from �2800 to

800 msec relative to the response. Then, Morlet wavelet

convolution was applied as described in Section 2.6.2.2. The

resulting alpha-band event-related spectral perturbations

(ERSPs) ranged from �2382 to 382 msec. Analogous to the

stimulus-locked analysis, mean alpha-band power was

computed in a broad 400 msec time-window in-between �182

and 224 msec4 (relative to the response). The time window

was set around the peak in the grand average contralateral

minus ipsilateral difference waveform across all conditions at

21 msec. The peak was determined by identifying the point in

time at which the difference waveform (in-between �500 and

380 msec) reached its most negative amplitude value. Mean

alpha power values for each condition were submitted to a

repeated-measures ANOVA, including the within-subject

factors spatial demand and perceptual load. Further, we ob-

tained estimates of 20%- and 50%-fractional area latency,

using a jackknifing approach (Miller et al., 1998), as described

above. Specifically, the point in time at which the negative

area in-between �500 and 380 msec reached 20% and 50%,

respectively, was determined. The latency estimates were

submitted to a repeated-measures ANOVA, including the

within-subject factors spatial demand and perceptual load.

Finally, we applied the same decoding procedure as

describe above, using the response-locked alpha-band ERSPs

as classifier input. Again, a non-parametric cluster-based

permutation analysis was applied to compare decoding ac-

curacy to chance level. Considering the time-course of the

univariate, response-locked alpha-band ERSPs, only time

points in-between�500 and 380msec (i.e., last sampling point

in the ERSP data) were included in the statistical analysis. To

contrast decoding accuracy between the two spatial demand

conditions, we obtained the average decoding accuracy in a

broad time window surrounding the response (�340 to

360 msec, i.e., the time-period that resulted in significant

within-condition decoding across both conditions) and per-

formed a one-sided permutation test (as described above).

2.7. Data/code availability statement

The aggregated/processed data underlying the presented an-

alyses aswell as analysis code and stimuli associatedwith this

study can be found at https://osf.io/a8f6y/. Further, the re-

pository contains the source code for the custom-written

software that was used to run the experiment. The individual

raw EEG data as well as behavioral data are stored in the

following Zenodo repository: https://doi.org/10.5281/zenodo.

6368368. Due to ethical restrictions, access to the Zenodo
analysis time window was determined by adding 200 msec to the
peak latency and finding the sampling point that is closest to this
value.

https://osf.io/a8f6y/
https://doi.org/10.5281/zenodo.6368368
https://doi.org/10.5281/zenodo.6368368
https://doi.org/10.1016/j.cortex.2022.03.022
https://doi.org/10.1016/j.cortex.2022.03.022
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repository is only granted upon signing a data user agreement.

Further, the conditions of our ethics approval donot permit the

publication of any individual-related information such as age.
3. Results

3.1. Behavioral data

Behavioral results are displayed in Fig. 2. The analysis of

response times revealed a main effect spatial demand,

F(1,16)¼ 72.49, p< .001,hp
2¼ .82,with slower responses in high

spatial demandblocks (M¼ 837.67msec, SD¼ 95.29) compared

to low spatial demandblocks (M¼ 837.67msec, SD¼ 126.83). In

addition, therewas a significantmaineffect of perceptual load,

F(1,16) ¼ 158.36, p < .001, hp
2 ¼ .91, with slower responses in

high-load trials (M ¼ 848.38 msec, SD ¼ 119.32) compared to

low-load trials (M ¼ 707.56 msec, SD ¼ 101.61). For response

times, there was no significant interaction of spatial demand

and perceptual load, F(1,16) ¼ 3.19, p ¼ .093, hp
2 ¼ .17. A nearly

analogouspatternof resultswas revealedby theanalysis of the

percentage of correct responses. That is, participants respon-

dedmore accurately in lowspatial demandblocks (M¼ 92.38%,

SD ¼ 4.82) compared to high spatial demand blocks

(M ¼ 88.75%, SD ¼ 4.83), F(1,16) ¼ 20.97, p < .001, hp
2 ¼ .57. In

addition, the percentage of correct responses was higher in

low-load trials (M ¼ 96.45%, SD ¼ 2.87), compared to high-load

trials (M¼ 84.68%, SD¼ 7.40), F(1,16)¼ 54.19, p < .001, hp
2¼ .77.

Further, a significant interaction of spatial demand and

perceptual load, F(1,16) ¼ 11.11, p ¼ .004, hp
2 ¼ .41, comple-

ments the descriptive observation that the difference in ac-

curacy between low and high perceptual load was slightly

greater in high spatial demand blocks (M ¼ 13.63%, SD ¼ 7.12)

than in low spatial demand blocks (M ¼ 9.93%, SD ¼ 6.86).

3.2. Alpha power lateralization

Fig. 3A illustrates the time course of the contralateral minus

ipsilateral differences in alpha power at a cluster of posterior

scalp electrodes. A repeated-measures analysis of the mean
Fig. 2 e Behavioral performance. Solid, horizontal lines indicate

response times (B) in a given condition. Colored dots correspon

axis for the % of correct responses does not originate at 0.
alpha power amplitudes in-between 546 and 961 msec post-

sound array onset revealed no significant modulation by

spatial demand, F(1,16) ¼ 1.33, p ¼ .266, hp
2 ¼ .077, neither by

perceptual load, F(1,16) ¼ .01, p ¼ .943, hp
2 < .001, nor an

interaction between the two factors, F(1,16) ¼ .16, p ¼ .691,

hp
2 ¼ .010. Timeefrequency plots, illustrating contralateral,

ipsilateral, as well as contralateral minus ipsilateral power for

a broader frequency range (4e30 Hz) are available in the

Supplementary material. The figures show that lateralized

activity is restricted to the alpha frequency band. Further, the

Supplementary material includes a post-hoc analysis,

including the factor target eccentricity (inner vs outer targets,

cf. Section S2), demonstrating that alpha lateralization was

not sensitive to target eccentricity. Moreover, to assess the

potential impact of horizontal eye movements on alpha

lateralization magnitude, the Supplementary material in-

cludes an additional analysis, including the average lateral-

ized horizontal EOG voltages as a covariate (cf. Section S4).

3.3. Alpha lateralization onset latencies

To investigate whether the time-course of alpha lateralization

was affected by the task demands, we assessed alpha lateral-

ization onset latencies. Fig. 3B and C illustrate the points in

time where the area under the condition-specific difference

curves reaches 20% and 50%, respectively (i.e., the 20% FAL and

the 50% FAL). The analysis of fractional area latency (FAL)

measures revealed a significant main effect of perceptual load

for the 20%-FAL, Fcorr(1,16) ¼ 23.91, p < .001, hp
2 ¼ .599, and the

50%-FAL, Fcorr(1,16) ¼ 25.39, p < .001, hp
2 ¼ .613. That is, alpha

lateralization emerged earlier in lowperceptual load compared

to high perceptual load trials (D20%¼ 208msec, SED-20% ¼ 42.21,

D50% ¼ 173 msec, SED-50% ¼ 35.42). Further, a significant main

effect of spatial demand was evident for the 20%-FAL,

Fcorr(1,16) ¼ 4.84, p ¼ .043, hp
2 ¼ .232, and the 50%-FAL,

Fcorr(1,16) ¼ 9.39, p ¼ .007, hp
2 ¼ .369, indicating earlier alpha

lateralization onset latencies in low spatial demand blocks

compared to high spatial demand blocks (D20% ¼ 87 msec, SED-

20% ¼ 39.30, D50% ¼ 138 msec, SED-50% ¼ 45.25). There were no

significant interactions (all Fcorr < .21).
the mean percentage of correct responses (A) or mean

d to individual response measures. Please note that the y-
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Fig. 3 e Alpha Power Lateralization. (A) Time course of contralateral minus ipsilateral differences in alpha power across a

cluster of parieto-occipital scalp electrodes. The narrow gray rectangle highlights the time window used for statistical

analysis of mean alpha lateralization magnitude. Error bars indicate the standard error of the mean. lsd-low ¼ low spatial

demand/low perceptual load, lsd-high ¼ low spatial demand/high perceptual load, hsd-low ¼ high spatial demand/low

perceptual load, hsd-high ¼ high spatial demand/high perceptual load. (B) A close-up view of the contralateral minus

ipsilateral difference waveforms in-between 1700 and 2800 msec (i.e., 100e1200 msec relative to sound array onset). The x-

axis denotes time (ms) relative to sound array onset. Circles mark the 50% (top) and 20% (bottom) fractional area latency

(FAL) measures for each condition. (C) A line plot of the respective 50%-FAL (top) and 20%-FAL (bottom) values, depending on

spatial demand and perceptual load. Y-axis values denote FAL relative to sound array onset. Error bars depict the standard

error according to Miller et al., 1998 (formula 2) (D) Scalp topographies based on the contralateral minus ipsilateral

differences in alpha power in-between 546 and 1061 msec following sound array onset (i.e., the time window used for

statistical analyses).
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3.4. Non-lateralized, posterior alpha power
desynchronization

Fig. 4 depicts the time-course of posterior alpha power at

electrode Pz, separately for each of the four conditions. The

analysis revealed a significant main effect of spatial demand,

F(1,16) ¼ 7.66, p ¼ .014, hp
2 ¼ .324, reflecting greater alpha ERD

(i.e., more negative power) in the high spatial demand condi-

tion (M ¼ �2.76 dB, SD ¼ 1.83) compared to the low spatial

demand condition (M ¼ �2.14 dB, SD ¼ 1.57). Neither themain

effect perceptual load, F(1,16)¼ 3.58, p¼ .077, hp
2¼ .18, nor the

interaction between spatial demand and perceptual load,

F(1,16) ¼ .64, p ¼ .437, hp
2 ¼ .04, were significant.

3.5. Decoding analysis

We decoded the exact spatial location (i.e., outer-left, inner-

left, inner-right, outer-right) of the target sound based on the

scalp distribution of alpha-band EEG power. Fig. 5 shows the

grand average scalp topography for each target location,

separately for the two spatial demand conditions (and aver-

aged across the two perceptual load conditions). Fig. 6A shows

the time-course of decoding accuracy for the low versus high

spatial demand condition, as well as the difference in decod-

ing accuracy between conditions. Decoding accuracy starts to

rise above chance level (i.e., 25%) at around 1940 msec in the

low spatial demand condition (i.e., 340 msec following sound

array onset) and shortly thereafter (around 2100 msec) in the
high spatial demand condition. At first, it increases continu-

ously in both spatial demand conditions. In the low spatial

demand condition, decoding accuracy reaches a peak at

around 2280 msec (i.e., 680 msec post-sound onset) and then

gradually decreases throughout the remainder of the

response interval; in the high spatial demand condition,

decoding accuracy continues to rise beyond the peak in the

low spatial demand condition until around ~2440 msec (i.e.,

840 msec post-sound onset). While gradually decreasing

thereafter, the decoding accuracy remains on a higher level

compared to the low spatial demand condition. Toward the

end of the response interval (i.e., around 3800msec), decoding

accuracy approaches chance level in both conditions. The

cluster mass test revealed that decoding was significantly

greater than chance in both spatial demand conditions. We

identified significant clusters following sound array onset in

each of the two conditions (see Fig. 6A, solid green and yellow

lines). In the high spatial demand condition, the cluster ex-

tends from around 2120 msece to ~3380 msec relative to cue

onset (i.e., ~520e1780 msec relative to sound array onset,

p < 10�4); in the low spatial demand condition, a first cluster

spans a partially overlapping time period in-between

~1940 msec and 2820 msec relative to cue onset (i.e.,

~340e1220 msec relative to sound array onset, p < 10�4). In

addition, a second, rather late cluster spans the time period

from ~3520 to 3740 msec relative to cue onset (i.e.,

~1920e2140msec relative to sound array onset, p¼ .036). Note,

however, that cluster-based permutation test results should
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Fig. 4 e Event-related desynchronization (ERD) of alpha power at Pz. The line plot illustrates the condition-specific averages

depending on spatial demand and perceptual load. Error bars indicate the standard error of the mean. lsd-low ¼ low spatial

demand/low perceptual load, lsd-high ¼ low spatial demand/high perceptual load, hsd-low ¼ high spatial demand/low

perceptual load, hsd-high ¼ high spatial demand/high perceptual load. The gray rectangle indicates the approximate time

window used for statistical analysis (i.e., 1698e2698 msec relative to target cue onset or 98e1098 msec relative to sound

array onset). Scalp topographies are based on the average alpha power in the respective analysis time window.

Fig. 5 e Scalp topographies of instantaneous alpha power for each of the target locations. Alpha power was averaged across

a broad time interval following sound array onset (i.e., 320e1780 msec post sound array onset), averaged across subjects as

well as across the two perceptual load conditions. The top row depicts the scalp topographies for the high spatial demand

(HSD) condition, the bottom row shows the low spatial demand (LSD) condition.
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not be used to derive conclusions about the specific onset or

offset of a certain effect (Sassenhagen & Draschkow, 2019).

The black, dashed line in Fig. 6A illustrates the difference in

decoding accuracy between the two spatial demand condi-

tions. A cluster-corrected sign-permutation test indicated

significant differences in decoding ability (p ¼ .013, one-sided

test, cluster extending from ~2420 to 2680msec relative to cue

onset, i.e., ~820e1080 msec relative to sound array onset),

with higher decoding accuracy in the high spatial demand

condition compared to the low spatial demand condition.
Finally, we assessed the overall difference in decoding

abilitywithin the post-stimulus period (specifically, within the

approximate time-window that resulted in above-chance

decoding accuracy within both spatial demand conditions).

A one-sided permutation test of the average decoding accu-

racy between 1920 and 3380msec (i.e., 320e1780msec relative

to sound array onset) consistently revealed a significant dif-

ference in decoding accuracy between the spatial demand

conditions (p ¼ .008, Fig. 6B). Notably, an additional, explor-

atory decoding analysis based on alpha power at parieto-
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Fig. 6 e Location decoding based on the multivariate scalp distribution of alpha power. (A) Time-course of the average

decoding accuracy results in the low (yellow) and high (green) spatial demand condition, respectively. The colored shading

indicates ±1 standard error of the mean (SEM). Chance-level performance (i.e., 25%) is indicated by the gray dashed

horizontal line. The yellow and green solid bars indicate significant decoding of the target location in the low and high

spatial demand condition, respectively. The black solid bar denotes significant differences in decoding ability between the

low and the high spatial demand condition. Note that only time-points in-between 1600 and 3800 msec were considered in

the statistical analysis. The vertical line at x ¼ 1600 msec indicates sound array onset. (B) Boxplots refer to the average

decoding accuracy in-between 1920 and 3380 msec relative to cue-onset (i.e., 320e1780 msec following sound array onset).

As per convention, boxplots illustrate the interquartile range and the median. Whiskers extent to the 1.5 times the

interquartile range. The superimposed circles show the average decoding accuracy, while the corresponding error bars

denote the 95% bootstrap confidence interval of the mean (number of bootstrap samples ¼ 10,000).
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occipital scalp sites (rather than the whole scalp), returned

very comparable results (cf. Supplementary material, S3).

A supplementary covariate analysis further ruled out that

the differences in decoding accuracy can be accounted for by

horizontal eye movements (cf. Supplementary section S4).

3.6. Confusion matrices

To provide more detailed insights into the decoding results,

here we show the confusionmatrices for each combination of

target location and classification response, separately for the

high and low spatial demand condition. Fig. 7 illustrates the

probability of each classification response (i.e., predicted

location) for a given stimulus category (i.e., true location),

averaged over a broad time window following sound array

onset and over participants. In both conditions, the highest

probability of classification response is evident at the true

location. Interestingly, while neighboring positions receive

the most classification errors, the least confusion occurs

predominantly between a true location and the position that

is in the opposite hemifield and of opposite eccentricity (e.g.,

left-out vs right-in).

3.7. Response-locked analyses

As outlined above, we observe both a shift in response latency

as well as a shift in alpha-band ERSPs latency across the

different conditions. Moreover, the timing of the alpha-band
ERSPs seems to coincide well with the timing of the manual

responses. This raises the question, to what extent the

observed effects could be accounted for by motor response

preparation processes (as opposed to perceptual processing).

On a similar note, it stands out that the differences in

decoding accuracy between the two spatial demand condi-

tions arise relatively late (>700 msec), which raises the ques-

tion whether the differences in classification accuracy could

be influenced by differences in the response times between

the low versus high spatial demand condition. The observa-

tions prompted us to perform additional analyses of the

response-locked data.

Accordingly, Fig. 8 illustrates the time-course of alpha-

band power, time-locked to the response. It is evident that

there is still a pronounced lateralization of alpha power that

peaks around the response. However, the analysis revealed

neither a modulation by spatial demand or perceptual load,

nor an interaction of the two factors (all F < 1.80). The analysis

of fractional area onset latencies revealed no significant ef-

fects, neither for the 20%-FAL (all Fcorr < 1.49), nor for the 50%-

FAL (all Fcorr < .84).

To investigate whether the differences in decoding accu-

racy could have been influenced by response time differences,

we performed an additional decoding analysis, using the

response-locked alpha-band ERSPs as classifier input. Fig. 9A

illustrate the time course of average decoding accuracy in the

low and high spatial demand condition, respectively. In both

conditions, decoding accuracy starts to ramp up around
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Fig. 7 e Confusionmatrices for the low (LSD, panel A) and high (HSD, panel B) spatial demand condition. Each cell shows the

probability of a given classification response (y-axis) for each stimulus position (x-axis), averaged across subjects and

across a broad time window following sound array onset (i.e., 1940e3360 msec relative to cue onset or respectively,

340e1760 msec relative to sound array onset). Location labels (1e4) correspond to stimulus locations in their order of

occurrence from left to right (i.e., left-out, left-in, right-in, right-out).

Fig. 8 e Response-locked alpha power lateralization. The

line plot illustrates the condition-specific contralateral

minus ipsilateral difference waveforms across a cluster of

parieto-occipital scalp electrodes. Error bars indicate the

standard error of the mean. The shaded rectangle marks

the time window that was used to compute mean alpha

power for statistical analyses. The gray dashed line

corresponds to the time of the response at x ¼ 0. lsd-

low ¼ low spatial demand/low perceptual load, lsd-

high ¼ low spatial demand/high perceptual load, hsd-

low ¼ high spatial demand/low perceptual load, hsd-

high ¼ high spatial demand/high perceptual load.
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�500 msec and then peaks around the response. A cluster-

based permutation analysis revealed a significant cluster

(p < 10�4) indicating above-chance decoding accuracy, in both

spatial demand conditions (see Fig. 9A). In the low spatial

demand condition, the cluster ranged from �220 to 360 msec,

whereas in the high spatial demand condition, the cluster

spans the time period from �340 to 360 msec relative to the

response. As mentioned above, cluster-based permutation

test results should not be used to derive conclusions about the

specific onset or offset of a certain effect (Sassenhagen &

Draschkow, 2019).

Finally, we computed the average decoding accuracy in-

between a broad time window that resulted in significant

within-condition decoding across both conditions (i.e., �340

to 360 msec). A one-sided permutation test reveals that on

average classifier performance in the high spatial demand

condition still significantly exceed classification accuracy in

the low spatial demand condition (p ¼ .005, see Fig. 9B).
4. Discussion

Sensory stimuli and behavioral demands are constantly sub-

ject to change, requiring the attentive brain to adapt its

response to accommodate to those changes. In this study, we

investigated the effects of varying perceptual load and spatial

demand in a sound localization task on post-stimulus alpha-

band oscillations. The notion that alpha-band oscillations

track the currently attended location in a spatially fine-tuned

manner is relatively undisputed. However, what remains

more elusive is to what degree this spatial specificity depends

on the current task demands. Here, we demonstrate that the

amount of spatial information reflected in the multivariate

scalp distribution of alpha power increases when the task

requires a precise sound localization (i.e., indicating the exact
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Fig. 9 e Location decoding based on the multivariate scalp distribution of response-locked alpha-band ERSPs. (A) Time-

course of the average decoding accuracy in the low (yellow) and high (green) spatial demand condition, respectively. The

colored shading indicates ±1 SEM. Chance-level performance (i.e., 25%) is indicated by the gray dashed horizontal line. The

yellow and green solid bars indicate significant decoding of the target location in the low and high spatial demand

condition, respectively. Note that only time-points in-between ¡500 and 380 msec were considered in the statistical

analysis (360 msec corresponds to the last post-response sampling point in the ERSP waveforms). The vertical line at

x ¼ 0 msec indicates the response. (B) Boxplots refer to the average decoding accuracy in-between ¡340 and 360 msec

relative to the response. As per convention, boxplots illustrate the interquartile range and the median. Whiskers extent to

the 1.5 times the interquartile range. The superimposed circles show the average decoding accuracy, while the

corresponding error bars denote the 95% bootstrap confidence interval of the mean (number of bootstrap samples¼ 10,000).
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stimulus location) compared to when a rather coarse locali-

zation judgment is required (i.e., indicating the hemifield). In

contrast, these task demand-dependent modulations were

not captured by the magnitude of univariate parieto-occipital

alpha lateralization. Rather, the time course of alpha power

lateralization varied with the task demands.

Behaviorally, the pattern of results was consistent with the

well-established observation that the detection of a target

sound in a cocktail-party scenario suffers from additional

concurrent stimuli in the auditory scene (Brungart& Simpson,

2007; Brungart, Simpson, Ericson, & Scott, 2001; Ericson,

Brungart, & Simpson, 2004; Klatt et al., 2018b). Accordingly,

in the present study, participants' responses were slower and

less accurate when the sound array contained four (high

perceptual load) instead of just two sounds (low perceptual

load). In terms of sound localization accuracy, this difference

was even more pronounced when they were asked to report

the exact target location (high spatial demand) rather than the

target hemifield (low spatial demand). Certainly, the present

set size effect cannot be completely disentangled from the

effects of energetic masking due to the acoustic overlap be-

tween the competing sound sources (cf. Murphy et al., 2017).

However, most critical for the intended EEG analysis was the

manipulation of spatial demand. As expected, indicating the

exact sound location was more challenging (i.e., slower and

less accurate) than simply determining whether the target

was present in the left or right hemispace. Nevertheless,

subjects still managed to perform clearly above chance level

(i.e., on average > 80% correct).
4.1. Decoding of auditory covert attention based on
alpha power modulations

The main question of the present study was: Is the difference

in spatial task demands also reflected in the neural signal?

Strikingly, while the classifier could reliably decode the pre-

cise target location in both spatial demand conditions, the

amount of spatial information reflected in the scalp distribu-

tion of alpha-band power was higher under high spatial de-

mand. It should be emphasized that in both spatial demand

conditions, participants were presented with the exact same

trials (although in randomly shuffled order). This rules out

that differences between conditions were caused by bottom-

up perceptual factors. Further, the confusion matrices show

most classification errors for neighboring positions and the

least confusion between the true target location and the

location that is both within the other hemifield and on the

opposite side (e.g., left-out vs right-in). This supports the

assumption that in auditory scene analysis the relative loca-

tion between sounds is coded on a neural level, rather than

the mere stimulus position (cf. Shiell, Hausfeld, & Formisano,

2018).

The present results extend our previous work, using an

analogous auditory search task design, where we demon-

strated that the presence of auditory post-stimulus alpha

lateralization was dependent on the task-relevance of spatial

information. Specifically, Klatt et al. (2018b) showed that alpha

lateralization was absent in a simple sound detection task

(i.e., when spatial location was completely irrelevant to the
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task), whereas it reliably indicated the attended locationwhen

participants were asked to localize the target. Here, we show

that post-stimulus alpha oscillations are not only sensitive to

such coarse manipulations of spatial relevance, but rather e

when considering the multivariate activity patterns e also

capture fine-grained adaptions to the required degree of

spatial specificity. However, the curves reflecting decoding

accuracy in the low and high spatial demand conditions do

not diverge until about 660 msec following sound array onset;

in addition, statistically significant differences in decoding

accuracy were limited to a relatively late time-window (i.e.,

>800 msec following sound array onset; cf. Fig. 6A). In

contrast, general decodability of spatial location increases

above chance level shortly after sound array onset and per-

sists well into the response interval. This suggests that, even

though the spatial demand conditions were blocked (i.e.,

participants knew beforehand which spatial specificity would

be required), it took several hundred milliseconds to evoke

changes in spatial specificity of the underlying alpha power

signal. Such long latencies have also been reported with

respect to voluntary adaptions of the alpha-power signal in a

visual spatial cueing study paradigm, requiring participants to

adopt either a narrow or a broad focus of attention in antici-

pation of an upcoming search array (Feldmann-Wüstefeld &

Awh, 2020). In the latter study, Feldmann-Wüstefeld & Awh,

2020 computed spatially selective channel tuning functions

(CTF) based on the topography distribution of alpha power and

assessed their slope as a measure of spatial selectivity.

Notably, differences in the CTF slopes between the narrow-

focus cue and the broad-focus cue only emerged at time-

points >500 msec following cue onset. Considering the

response times in the present study, the question arises,

whether the observed differences in decoding accuracy could

be influenced by response time differences between the two

spatial demand conditions. However, a decoding analysis

based on the response-locked alpha-band ERSPs still revealed,

on average, greater decoding accuracy in the high compared

to the low spatial demand condition. This clearly shows that

the condition differences in the stimulus-locked analysis do

not solely rely on differences in response time.

Critically, the present results add to these previous findings

in several ways: First, we demonstrate that just like prepara-

tory attention is finely tuned and spatially sharpened

depending on the task demands (Feldmann-Wüstefeld&Awh,

2020; Voytek et al., 2017), the ongoing attentional processing

following search array onset is dynamically modulated

depending on the required spatial specificity of the task.

Further, the present findings complement a growing body of

evidence, supporting the assumption that modulations of

alpha oscillations represent a ubiquitous top-down controlled

mechanism of spatial attention that plays a role across

different attentional domains as well as across sensory mo-

dalities. Notably, the pattern that decoding accuracy increases

if a more precise spatial judgment is required did fully

reproduce when using only parieto-occipital channels as

classifier input (cf. Supplementary material). This suggests

that most information that contributes to classification per-

formance, and critically, to the difference in decoding accu-

racy between conditions, is present at posterior electrode

sites. Overall, this is in line with the notion that parieto-
occipital cortex subserves a supramodal neural circuit for

spatial attention (Popov, Gips, Weisz, & Jensen, 2021).

Although, to be fair, the present analysis does not provide

precise insights into the features that drive decoding perfor-

mance in the two conditions. It remains possible that there

aremore subtle differences in the features (e.g., themixture of

electrodes) that contribute to the classification accuracy in the

two spatial demand conditions.

In principle, the notion that attention can improve the in-

formation content of a neural code is not novel. In fact, it is

well-established that attending to a spatial position or a

relevant feature increases single-neuron firing rates in pri-

mary and extrastriate visual areas and can result in changes

in the size and position of spatial receptive fields (reviewed by

(Sprague, Saproo, & Serences, 2015)). In the auditory domain,

physiological recordings in cats (Lee & Middlebrooks, 2011)

revealed similar sharpening of spatial tuning in auditory

cortex (i.e., A1) when the animal engaged in a spatial task

compared to an off-task “Idle” condition and a non-spatial

periodicity detection task (for similar findings in human A1

see van der Heijden, Rauschecker, Formisano, Valente, & de

Gelder, 2018). Hence, along with previous studies in the vi-

sual modality (Feldmann-Wüstefeld & Awh, 2020; Voytek

et al., 2017), the present results extend these findings,

showing that such “sharpening” of neural activity occurs not

only in tuning functions of single neurons, but is also evident

in the adaption of population-level activity patterns.

4.2. Alpha power lateralization as a temporally resolved
signature of target processing

In addition to the multivariate decoding analysis, we also

analyzed alpha lateralization following sound array onset as a

‘classical’ univariate measure of attentional orienting (e.g.,

Ikkai, Dandekar, & Curtis, 2016). In the present study, alpha

lateralizationmagnitude did neither varywith perceptual load

or spatial demand. The former observation replicates results

of a previous study (Klatt et al., 2018b), finding no evidence for

differences in alpha lateralization magnitude between a low-

load (i.e., two-sound array) and a high-load (i.e., four-sound

array) auditory search condition. In contrast, Bacigalupo and

Luck (2019) reported that target-elicited alpha lateralization

in a visual search paradigm tended to increase with greater

task difficulty. Thus, the authors speculate that alpha later-

alization might reflect effort rather than target selection. The

present findings do not seem to bolster this claim: Both the

behavioral data aswell as the complementary analysis of non-

lateralized posterior alpha power indicate that task difficulty

and required cognitive resources increased with greater

spatial demand. Yet, alpha lateralization magnitude was un-

affected by the experimental manipulation. An additional

study by Wang, Megla, and Woodman (2021) corroborates the

present results, showing that the magnitude of stimulus-

induced alpha lateralization remains unaffected by an in-

crease in the difficulty of attentional selection (e.g., through

higher distractor numerosity), while global, non-lateralized

posterior alpha power suppression did increase with dis-

tractor set size (Experiment 1 and 2) and with greater distance

between the items (Experiment 3). Although, in addition to a

general caveat about the interpretation of non-significant
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effects, it should be noted that with the present sample size,

wewere likely limited to detectmedium-sized effects (see also

Section 2.2).

Nonetheless, the present findings do substantiate the

notion that post-stimulus (or target-elicited) alpha lateraliza-

tion presents an active signature of target processing in both

visual (Bacigalupo & Luck, 2019) as well as auditory search

(Klatt et al., 2018b). Bacigalupo and Luck (2019) further disso-

ciate alpha lateralization from a well known ERP-signature of

target individuation (i.e., the N2pc), suggesting that alpha

lateralization reflects a long-lasting and ongoing attentional

processing of the target. Although we do not investigate ERP

correlates in the present study, a closer look at the time-course

of alpha lateralization supports this assumption: on average,

alpha lateralization persist beyond and in fact peaks around

the time participants make their response. Different temporal

characteristics of N2ac (an auditory analog of the visual N2pc

componentGamble& Luck, 2011) andalpha lateralizationhave

recently also been observed in response to shifts of auditory

attentionbetweenrelevant talkers ina simulatedcocktailparty

scenario (Getzmann, Klatt, Schneider, Begau, & Wascher,

2020), corroborating the notion that the EEG measures reflect

different attentional processes (see also Klatt et al., 2018b).

Contrary to alpha lateralization magnitude, alpha lateral-

ization onset latencywas linked to task demands. Specifically,

alpha laterization emerged around 170 msec earlier (50%-FAL)

in the less demanding low perceptual load condition relative

to the high perceptual load condition and ~140 msec earlier

(50%-FAL) in the low spatial demand condition relative to the

high spatial demand condition. Overall, the observed modu-

lations of alpha lateralization onset latency are in line with a

previous visual search study (Foster et al., 2017), showing that

the onset of alpha-based CTFs varied with reaction times as

well as search difficulty. That the latency differences reported

by Foster et al. (2017) were much larger (i.e., differences of up

to 440 msec) could be attributed to the fact that their search

conditions differed more strongly (e.g., distractors were all

identical vs heterogenous). In sum, the present findings

corroborate the claim that attentional modulations of alpha

power not only track the location of covert spatial attention,

but also the time-course (i.e., the latency) of post-stimulus

attentional processing.

Moreover, it is striking that alpha lateralization is still

evident in the response-locked ERSPs e notably, of similar

magnitude as in the stimulus-locked ERSPs e whereas the

modulations of ERSP latency were not present anymore.

While this rules out that the observed effects can be better

accounted for by motor preparation processes than by

perceptual processing, together with the response-locked

decoding analysis, it does support the notion that alpha os-

cillations might be closely related to the transfer of spatially-

specific information in a response-specific format (Klatt

et al., 2018a).

Finally, the apparent difference between univariate and

multivariatemeasures of alpha power highlights the potential

of multivariate decoding for the study of neurocognitive

mechanisms. Similarly, when performing a univariate anal-

ysis of alpha power, Voytek et al. (2017) did not capture the

fine-grained differences in the allocation of attention
(depending on the spatial certainty of a cue) that were evident

in the multivariate topography of alpha power. Taken

together, this illustrates the increased sensitivity of multi-

variate decoding techniques to reveal complex dynamics that

are present in the combined signal across the scalp (Hebart &

Baker, 2017).
5. Conclusion

In conclusion, our results show that the spatial specificity of

post-stimulus alpha-band oscillations can be finely adapted

depending on the spatial demands of the task. Notably, this

task-dependent adaptation was only evident in the multi-

variate distribution of the alpha-band signal, whereas the

magnitude of univariate parieto-occipital alpha lateralization

did not capture those variations in perceptual load and spatial

demand. Rather, alpha lateralization onset latency varied

with the difficulty of the task, suggesting that the time-

resolved modulation of post-stimulus alpha lateralization

captures differences in the efficiency of post-attentional pro-

cessing. These findings improve our understanding of the

functional role of alpha oscillations for the ongoing atten-

tional processing of complex auditory scenes and provide new

insights into the attentional mechanisms underlying top-

down adaptions to changing task demands.
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